Natriuretic peptides as regulatory mediators of secretory activity in the digestive system - PubMed (original) (raw)

Review

. 2009 Apr 10;154(1-3):5-15.

doi: 10.1016/j.regpep.2009.02.009. Epub 2009 Feb 20.

Affiliations

Review

Natriuretic peptides as regulatory mediators of secretory activity in the digestive system

Maria Eugenia Sabbatini. Regul Pept. 2009.

Abstract

Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are members of the natriuretic peptide family best known for their role in blood pressure regulation. However, in recent years all the natriuretic peptides and their receptors have been described in the gastrointestinal tract, digestive glands and central nervous system, as well as implicated in the regulation of digestive gland functions. The current review highlights the regulatory role of ANP and CNP in pancreatic and other digestive secretions. ANP and CNP stimulate basal as well as induced pancreatic secretion and modify bicarbonate and chloride secretions. Whereas ANP and CNP exert effects directly on pancreatic cells, CNP also acts through a vago-vagal reflex. At high doses both peptides attenuate pancreatic secretion induced by high doses of secretin through the PLC/PKC pathway. With regards to other digestive secretions, ANP and CNP decrease bile secretion in the rat. ANP does not induce salivation by itself but enhances stimulated salivary secretion and modifies salivary composition in rat parotid as well as submandibular glands. In rat pancreatic, hepatic, parotid and submandibular tissues, the NPR-C receptor mediates mostly peripheral responses whereas NPR-A and NPR-B receptors, which are coupled to guanylate cyclase, likely mediate the central response. In addition, ANP modulates gastric acid secretion via a vagal-dependent mechanism. In the intestine, ANP and CNP decrease water and sodium chloride absorption through an increase in cGMP levels. Overall, these findings indicate that ANP and CNP are members of the large group of regulatory peptides affecting digestive secretions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources