ATP release from non-excitable cells - PubMed (original) (raw)
ATP release from non-excitable cells
Helle A Praetorius et al. Purinergic Signal. 2009 Dec.
Abstract
All cells release nucleotides and are in one way or another involved in local autocrine and paracrine regulation of organ function via stimulation of purinergic receptors. Significant technical advances have been made in recent years to quantify more precisely resting and stimulated adenosine triphosphate (ATP) concentrations in close proximity to the plasma membrane. These technical advances are reviewed here. However, the mechanisms by which cells release ATP continue to be enigmatic. The current state of knowledge on different suggested mechanisms is also reviewed. Current evidence suggests that two separate regulated modes of ATP release co-exist in non-excitable cells: (1) a conductive pore which in several systems has been found to be the channel pannexin 1 and (2) vesicular release. Modes of stimulation of ATP release are reviewed and indicate that both subtle mechanical stimulation and agonist-triggered release play pivotal roles. The mechano-sensor for ATP release is not yet defined.
Figures
Fig. 1
Working model for the ATP release mechanism from non-excitable cells
Similar articles
- Autocrine/paracrine stimulation of purinergic receptors in osteoblasts: contribution of vesicular ATP release.
Romanello M, Codognotto A, Bicego M, Pines A, Tell G, D'Andrea P. Romanello M, et al. Biochem Biophys Res Commun. 2005 Jun 17;331(4):1429-38. doi: 10.1016/j.bbrc.2005.03.246. Biochem Biophys Res Commun. 2005. PMID: 15883034 - Mechanisms of ATP Release by Inflammatory Cells.
Dosch M, Gerber J, Jebbawi F, Beldi G. Dosch M, et al. Int J Mol Sci. 2018 Apr 18;19(4):1222. doi: 10.3390/ijms19041222. Int J Mol Sci. 2018. PMID: 29669994 Free PMC article. Review. - Adenosine triphosphate release and purinergic regulation of cholangiocyte transport.
Feranchak AP, Fitz JG. Feranchak AP, et al. Semin Liver Dis. 2002 Aug;22(3):251-62. doi: 10.1055/s-2002-34503. Semin Liver Dis. 2002. PMID: 12360419 - ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors.
Timóteo MA, Carneiro I, Silva I, Noronha-Matos JB, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P. Timóteo MA, et al. Biochem Pharmacol. 2014 Jan 15;87(2):371-9. doi: 10.1016/j.bcp.2013.11.007. Epub 2013 Nov 22. Biochem Pharmacol. 2014. PMID: 24269631 - Regulation of cellular ATP release.
Fitz JG. Fitz JG. Trans Am Clin Climatol Assoc. 2007;118:199-208. Trans Am Clin Climatol Assoc. 2007. PMID: 18528503 Free PMC article. Review.
Cited by
- An integrated toolkit for human microglia functional genomics.
Haq I, Ngo JC, Roy N, Pan RL, Nawsheen N, Chiu R, Zhang Y, Fujita M, Soni RK, Wu X, Bennett DA, Menon V, Olah M, Sher F. Haq I, et al. Stem Cell Res Ther. 2024 Apr 10;15(1):104. doi: 10.1186/s13287-024-03700-9. Stem Cell Res Ther. 2024. PMID: 38600587 Free PMC article. - The Purinergic Nature of Pseudoxanthoma Elasticum.
Kauffenstein G, Martin L, Le Saux O. Kauffenstein G, et al. Biology (Basel). 2024 Jan 26;13(2):74. doi: 10.3390/biology13020074. Biology (Basel). 2024. PMID: 38392293 Free PMC article. Review. - Pacing intracellular Ca2+ signals in exocrine acinar cells.
Yule DI, Takano T. Yule DI, et al. J Physiol. 2024 Jan 10:10.1113/JP284755. doi: 10.1113/JP284755. Online ahead of print. J Physiol. 2024. PMID: 38197224 - Vascular mechanotransduction.
Davis MJ, Earley S, Li YS, Chien S. Davis MJ, et al. Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5. Physiol Rev. 2023. PMID: 36603156 Free PMC article. Review. - Purinergic Signaling and Its Role in Mobilization of Bone Marrow Stem Cells.
Suszynska M, Adamiak M, Thapa A, Cymer M, Ratajczak J, Kucia M, Ratajczak MZ. Suszynska M, et al. Methods Mol Biol. 2023;2567:263-280. doi: 10.1007/978-1-0716-2679-5_17. Methods Mol Biol. 2023. PMID: 36255707
References
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15109209', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15109209/'}\]}
- Spyer KM, Dale N, Gourine AV (2004) ATP is a key mediator of central and peripheral chemosensory transduction. Exp Physiol 89:53–59 - PubMed
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1665262', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1665262/'}, {'type': 'PubMed', 'value': '15331685', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15331685/'}\]}
- Fabbro A, Skorinkin A, Grandolfo M, Nistri A, Giniatullin R (2004) Quantal release of ATP from clusters of PC12 cells. J Physiol 560:505–517 - PMC - PubMed
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16322458', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16322458/'}\]}
- Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499 - PubMed
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16001070', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16001070/'}\]}
- Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111 - PubMed
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC6725960', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC6725960/'}, {'type': 'PubMed', 'value': '15689558', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15689558/'}\]}
- Gourine AV, Llaudet E, Dale N, Spyer KM (2005) Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response. J Neurosci 25:1211–1218 - PMC - PubMed
LinkOut - more resources
Full Text Sources