Method for improving sequence coverage uniformity of targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology - PubMed (original) (raw)
Method for improving sequence coverage uniformity of targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology
Olivier Harismendy et al. Biotechniques. 2009 Mar.
Free article
Abstract
One approach for high-throughput population-based sequencing of targeted intervals in the human genome is to amplify the regions using long-range PCR (LR-PCR) followed by sequencing with next-generation sequencing (NGS) technologies. Utilizing this method, we have observed that the 50 bp located at the amplicon ends account for more than 50% of the sequenced bases and that the sequence coverage depth of base pairs within an amplicon is highly variable. Here we propose an explanation for the overrepresentation of the amplicon ends and show that the use of 5'-blocked primers for the LR-PCR reaction reduces their overrepresentation. Furthermore, we demonstrate that using a 600-bp library insert size rather than the standard 200-bp insert size results in more uniform sequence coverage depth. The capability to increase sequence coverage uniformity greatly improves the effective throughput of NGS platforms.
Similar articles
- THOR: targeted high-throughput ortholog reconstructor.
Bainbridge MN, Warren RL, He A, Bilenky M, Robertson AG, Jones SJ. Bainbridge MN, et al. Bioinformatics. 2007 Oct 1;23(19):2622-4. doi: 10.1093/bioinformatics/btl513. Epub 2006 Oct 11. Bioinformatics. 2007. PMID: 17038343 - SNP discovery performance of two second-generation sequencing platforms in the NOD2 gene region.
Melum E, May S, Schilhabel MB, Thomsen I, Karlsen TH, Rosenstiel P, Schreiber S, Franke A. Melum E, et al. Hum Mutat. 2010 Jul;31(7):875-85. doi: 10.1002/humu.21276. Hum Mutat. 2010. PMID: 20506538 - Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda).
Jex AR, Hu M, Littlewood DT, Waeschenbach A, Gasser RB. Jex AR, et al. BMC Genomics. 2008 Jan 11;9:11. doi: 10.1186/1471-2164-9-11. BMC Genomics. 2008. PMID: 18190685 Free PMC article. - Applications of next-generation sequencing technologies in functional genomics.
Morozova O, Marra MA. Morozova O, et al. Genomics. 2008 Nov;92(5):255-64. doi: 10.1016/j.ygeno.2008.07.001. Epub 2008 Aug 24. Genomics. 2008. PMID: 18703132 Review. - Rapid quantification of DNA libraries for next-generation sequencing.
Buehler B, Hogrefe HH, Scott G, Ravi H, Pabón-Peña C, O'Brien S, Formosa R, Happe S. Buehler B, et al. Methods. 2010 Apr;50(4):S15-8. doi: 10.1016/j.ymeth.2010.01.004. Methods. 2010. PMID: 20215015 Review.
Cited by
- Whole Exome Sequencing of Cell-Free DNA for Early Lung Cancer: A Pilot Study to Differentiate Benign From Malignant CT-Detected Pulmonary Lesions.
Tailor TD, Rao X, Campa MJ, Wang J, Gregory SG, Patz EF Jr. Tailor TD, et al. Front Oncol. 2019 Apr 24;9:317. doi: 10.3389/fonc.2019.00317. eCollection 2019. Front Oncol. 2019. PMID: 31069172 Free PMC article. - Are sites with multiple single nucleotide variants in cancer genomes a consequence of drivers, hypermutable sites or sequencing errors?
Smith TC, Carr AM, Eyre-Walker AC. Smith TC, et al. PeerJ. 2016 Sep 20;4:e2391. doi: 10.7717/peerj.2391. eCollection 2016. PeerJ. 2016. PMID: 27688957 Free PMC article. - A long PCR-based approach for DNA enrichment prior to next-generation sequencing for systematic studies.
Uribe-Convers S, Duke JR, Moore MJ, Tank DC. Uribe-Convers S, et al. Appl Plant Sci. 2014 Jan 7;2(1):apps.1300063. doi: 10.3732/apps.1300063. eCollection 2014 Jan. Appl Plant Sci. 2014. PMID: 25202592 Free PMC article. - Illumina sequencing of 15 deafness genes using fragmented amplicons.
Van Nieuwerburgh F, De Keulenaer S, De Schrijver J, Vandesompele J, Van Criekinge W, Coucke PJ, Deforce D. Van Nieuwerburgh F, et al. BMC Res Notes. 2014 Aug 9;7:509. doi: 10.1186/1756-0500-7-509. BMC Res Notes. 2014. PMID: 25106482 Free PMC article. - Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy.
Shaikh RS, Reuter P, Sisk RA, Kausar T, Shahzad M, Maqsood MI, Yousif A, Ali M, Riazuddin S, Wissinger B, Ahmed ZM. Shaikh RS, et al. Eur J Hum Genet. 2015 Apr;23(4):473-80. doi: 10.1038/ejhg.2014.136. Epub 2014 Jul 23. Eur J Hum Genet. 2015. PMID: 25052312 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources