Sequential Markov coalescent algorithms for population models with demographic structure - PubMed (original) (raw)
Sequential Markov coalescent algorithms for population models with demographic structure
A Eriksson et al. Theor Popul Biol. 2009 Sep.
Abstract
We analyse sequential Markov coalescent algorithms for populations with demographic structure: for a bottleneck model, a population-divergence model, and for a two-island model with migration. The sequential Markov coalescent method is an approximation to the coalescent suggested by McVean and Cardin, and by Marjoram and Wall. Within this algorithm we compute, for two individuals randomly sampled from the population, the correlation between times to the most recent common ancestor and the linkage probability corresponding to two different loci with recombination rate R between them. These quantities characterise the linkage between the two loci in question. We find that the sequential Markov coalescent method approximates the coalescent well in general in models with demographic structure. An exception is the case where individuals are sampled from populations separated by reduced gene flow. In this situation, the correlations may be significantly underestimated. We explain why this is the case.
Similar articles
- Exact coalescent for the Wright-Fisher model.
Fu YX. Fu YX. Theor Popul Biol. 2006 Jun;69(4):385-94. doi: 10.1016/j.tpb.2005.11.005. Epub 2006 Jan 19. Theor Popul Biol. 2006. PMID: 16426654 - Markovian approximation to the finite loci coalescent with recombination along multiple sequences.
Hobolth A, Jensen JL. Hobolth A, et al. Theor Popul Biol. 2014 Dec;98:48-58. doi: 10.1016/j.tpb.2014.01.002. Epub 2014 Jan 28. Theor Popul Biol. 2014. PMID: 24486389 - Brownian models and coalescent structures.
Blum MG, Damerval C, Manel S, François O. Blum MG, et al. Theor Popul Biol. 2004 May;65(3):249-61. doi: 10.1016/j.tpb.2003.11.002. Theor Popul Biol. 2004. PMID: 15066421 - Coalescent approximation for structured populations in a stationary random environment.
Sagitov S, Jagers P, Vatutin V. Sagitov S, et al. Theor Popul Biol. 2010 Nov;78(3):192-9. doi: 10.1016/j.tpb.2010.06.008. Epub 2010 Jul 7. Theor Popul Biol. 2010. PMID: 20619285 Review. - Approximating the variance of the conditional probability of the state of a hidden Markov model.
Siegmund DO, Yakir B. Siegmund DO, et al. Stat Appl Genet Mol Biol. 2007;6:Article 18. doi: 10.2202/1544-6115.1296. Epub 2007 Jul 6. Stat Appl Genet Mol Biol. 2007. PMID: 17672820 Review.
Cited by
- Computing the joint distribution of the total tree length across loci in populations with variable size.
Miroshnikov A, Steinrücken M. Miroshnikov A, et al. Theor Popul Biol. 2017 Dec;118:1-19. doi: 10.1016/j.tpb.2017.09.002. Epub 2017 Sep 21. Theor Popul Biol. 2017. PMID: 28943126 Free PMC article. - Approaching Long Genomic Regions and Large Recombination Rates with msParSm as an Alternative to MaCS.
Montemuiño C, Espinosa A, Moure JC, Vera G, Hernández P, Ramos-Onsins S. Montemuiño C, et al. Evol Bioinform Online. 2016 Oct 2;12:223-228. doi: 10.4137/EBO.S40268. eCollection 2016. Evol Bioinform Online. 2016. PMID: 27721650 Free PMC article. Review. - Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes.
Kelleher J, Etheridge AM, McVean G. Kelleher J, et al. PLoS Comput Biol. 2016 May 4;12(5):e1004842. doi: 10.1371/journal.pcbi.1004842. eCollection 2016 May. PLoS Comput Biol. 2016. PMID: 27145223 Free PMC article. - The SMC' is a highly accurate approximation to the ancestral recombination graph.
Wilton PR, Carmi S, Hobolth A. Wilton PR, et al. Genetics. 2015 May;200(1):343-55. doi: 10.1534/genetics.114.173898. Epub 2015 Mar 17. Genetics. 2015. PMID: 25786855 Free PMC article. - scrm: efficiently simulating long sequences using the approximated coalescent with recombination.
Staab PR, Zhu S, Metzler D, Lunter G. Staab PR, et al. Bioinformatics. 2015 May 15;31(10):1680-2. doi: 10.1093/bioinformatics/btu861. Epub 2015 Jan 8. Bioinformatics. 2015. PMID: 25596205 Free PMC article.