Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation - PubMed (original) (raw)
. 2004 May 31;12(11):2404-22.
doi: 10.1364/opex.12.002404.
- PMID: 19475077
- DOI: 10.1364/opex.12.002404
Free article
Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation
Maciej Wojtkowski et al. Opt Express. 2004.
Free article
Abstract
Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the few micron scale. Fourier domain detection methods enable more than an order of magnitude increase in imaging speed and sensitivity, thus overcoming the sensitivity limitations inherent in ultrahigh-resolution OCT using standard time domain detection. Fourier domain methods also provide direct access to the spectrum of the optical signal. This enables automatic numerical dispersion compensation, a key factor in achieving ultrahigh image resolutions. We present ultrahigh-resolution, high-speed Fourier domain OCT imaging with an axial resolution of 2.1 ìm in tissue and 16,000 axial scans per second at 1024 pixels per axial scan. Ultrahigh-resolution spectral domain OCT is shown to provide a ~100x increase in imaging speed when compared to ultrahigh-resolution time domain OCT. In vivo imaging of the human retina is demonstrated. We also present a general technique for automatic numerical dispersion compensation, which is applicable to spectral domain as well as swept source embodiments of Fourier domain OCT.
Similar articles
- Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG. Potsaid B, et al. Opt Express. 2008 Sep 15;16(19):15149-69. doi: 10.1364/oe.16.015149. Opt Express. 2008. PMID: 18795054 Free PMC article. - Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Wojtkowski M, et al. Ophthalmology. 2005 Oct;112(10):1734-46. doi: 10.1016/j.ophtha.2005.05.023. Ophthalmology. 2005. PMID: 16140383 Free PMC article. - High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.
Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. Srinivasan VJ, et al. Ophthalmology. 2006 Nov;113(11):2054.e1-14. doi: 10.1016/j.ophtha.2006.05.046. Ophthalmology. 2006. PMID: 17074565 Free PMC article. - Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma.
Angmo D, Nongpiur ME, Sharma R, Sidhu T, Sihota R, Dada T. Angmo D, et al. Oman J Ophthalmol. 2016 Jan-Apr;9(1):3-10. doi: 10.4103/0974-620X.176093. Oman J Ophthalmol. 2016. PMID: 27013821 Free PMC article. Review. - State-of-the-art retinal optical coherence tomography.
Drexler W, Fujimoto JG. Drexler W, et al. Prog Retin Eye Res. 2008 Jan;27(1):45-88. doi: 10.1016/j.preteyeres.2007.07.005. Epub 2007 Aug 11. Prog Retin Eye Res. 2008. PMID: 18036865 Review.
Cited by
- Cross-sectional tracking of particle motion in evaporating drops: flow fields and interfacial accumulation.
Trantum JR, Eagleton ZE, Patil CA, Tucker-Schwartz JM, Baglia ML, Skala MC, Haselton FR. Trantum JR, et al. Langmuir. 2013 May 28;29(21):6221-31. doi: 10.1021/la400542x. Epub 2013 May 13. Langmuir. 2013. PMID: 23611508 Free PMC article. - Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization.
Baumann B, Baumann SO, Konegger T, Pircher M, Götzinger E, Schlanitz F, Schütze C, Sattmann H, Litschauer M, Schmidt-Erfurth U, Hitzenberger CK. Baumann B, et al. Biomed Opt Express. 2012 Jul 1;3(7):1670-83. doi: 10.1364/BOE.3.001670. Epub 2012 Jun 21. Biomed Opt Express. 2012. PMID: 22808437 Free PMC article. - Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors.
Zhang Q, Lu R, Wang B, Messinger JD, Curcio CA, Yao X. Zhang Q, et al. Sci Rep. 2015 Apr 22;5:9595. doi: 10.1038/srep09595. Sci Rep. 2015. PMID: 25901915 Free PMC article. - Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography.
Yu L, Liu G, Rubinstein M, Saidi A, Wong BJ, Chen Z. Yu L, et al. J Biomed Opt. 2009 Nov-Dec;14(6):064020. doi: 10.1117/1.3268442. J Biomed Opt. 2009. PMID: 20059258 Free PMC article. - Molecular contrast optical coherence tomography: a review.
Yang C. Yang C. Photochem Photobiol. 2005 Mar-Apr;81(2):215-37. doi: 10.1562/2004-08-06-IR-266. Photochem Photobiol. 2005. PMID: 15588122 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Other Literature Sources