Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients - PubMed (original) (raw)
Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients
Luca Trentin et al. Eur J Haematol. 2009 Nov.
Abstract
Objective: Gene expression profiles become increasingly more important for diagnostic procedures, allowing clinical predictions including treatment response and outcome. However, the establishment of specific and robust gene signatures from microarray data sets requires the analysis of large numbers of patients and the application of complex biostatistical algorithms. Especially in case of rare diseases and due to these constrains, diagnostic centers with limited access to patients or bioinformatic resources are excluded from implementing these new technologies.
Method: In our study we sought to overcome these limitations and for proof of principle, we analyzed the rare t(4;11) leukemia disease entity. First, gene expression data of each t(4;11) leukemia patient were normalized by pairwise subtraction against normal bone marrow (n = 3) to identify significantly deregulated gene sets for each patient.
Result: A 'core signature' of 186 commonly deregulated genes present in each investigated t(4;11) leukemia patient was defined. Linking the obtained gene sets to four biological discriminators (HOXA gene expression, age at diagnosis, fusion gene transcripts and chromosomal breakpoints) divided patients into two distinct subgroups: the first one comprised infant patients with low HOXA genes expression and the MLL breakpoints within introns 11/12. The second one comprised non-infant patients with high HOXA expression and MLL breakpoints within introns 9/10.
Conclusion: A yet homogeneous leukemia entity was further subdivided, based on distinct genetic properties. This approach provided a simplified way to obtain robust and disease-specific gene signatures even in smaller cohorts.
Similar articles
- [Biological microchip for establishing the structure of fusion transcripts involving MLL in children with acute leukemia].
Nasedkina TV, Ikonnikova AY, Tsaur GA, Karateeva AV, Ammour YI, Avdonina MA, Karachunskii AI, Zasedatelev AS. Nasedkina TV, et al. Mol Biol (Mosk). 2016 Nov-Dec;50(6):968-977. doi: 10.7868/S0026898416060148. Mol Biol (Mosk). 2016. PMID: 28064313 Russian. - Gene expression profiling of adult t(4;11)(q21;q23)-associated acute lymphoblastic leukemia reveals a different signature from pediatric cases.
De Braekeleer E, Douet-Guilbert N, Le Bris MJ, Basinko A, Morel F, De Braekeleer M. De Braekeleer E, et al. Anticancer Res. 2012 Sep;32(9):3893-9. Anticancer Res. 2012. PMID: 22993334 - MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.
Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. Armstrong SA, et al. Nat Genet. 2002 Jan;30(1):41-7. doi: 10.1038/ng765. Epub 2001 Dec 3. Nat Genet. 2002. PMID: 11731795 - When epigenetics kills: MLL fusion proteins in leukemia.
Slany RK. Slany RK. Hematol Oncol. 2005 Mar;23(1):1-9. doi: 10.1002/hon.739. Hematol Oncol. 2005. PMID: 16118769 Review. - Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: a study of 7 patients and review of the literature.
De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, Arnaud B, Marschalek R, Férec C, De Braekeleer M. De Braekeleer E, et al. Blood Cells Mol Dis. 2010 Apr 15;44(4):268-74. doi: 10.1016/j.bcmd.2010.02.011. Epub 2010 Mar 4. Blood Cells Mol Dis. 2010. PMID: 20206559 Review.
Cited by
- HOXA9/IRX1 expression pattern defines two subgroups of infant MLL-AF4-driven acute lymphoblastic leukemia.
Symeonidou V, Ottersbach K. Symeonidou V, et al. Exp Hematol. 2021 Jan;93:38-43.e5. doi: 10.1016/j.exphem.2020.10.002. Epub 2020 Oct 15. Exp Hematol. 2021. PMID: 33069783 Free PMC article. - The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia.
Jackson TR, Ling RE, Roy A. Jackson TR, et al. Front Immunol. 2021 Feb 17;12:637975. doi: 10.3389/fimmu.2021.637975. eCollection 2021. Front Immunol. 2021. PMID: 33679795 Free PMC article. Review. - Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study.
Kang H, Wilson CS, Harvey RC, Chen IM, Murphy MH, Atlas SR, Bedrick EJ, Devidas M, Carroll AJ, Robinson BW, Stam RW, Valsecchi MG, Pieters R, Heerema NA, Hilden JM, Felix CA, Reaman GH, Camitta B, Winick N, Carroll WL, Dreyer ZE, Hunger SP, Willman CL. Kang H, et al. Blood. 2012 Feb 23;119(8):1872-81. doi: 10.1182/blood-2011-10-382861. Epub 2011 Dec 30. Blood. 2012. PMID: 22210879 Free PMC article. - Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras.
Chu SH, Song EJ, Chabon JR, Minehart J, Matovina CN, Makofske JL, Frank ES, Ross K, Koche RP, Feng Z, Xu H, Krivtsov A, Nussenzweig A, Armstrong SA. Chu SH, et al. Blood Adv. 2018 Oct 9;2(19):2478-2490. doi: 10.1182/bloodadvances.2018021592. Blood Adv. 2018. PMID: 30266823 Free PMC article. - The immune checkpoint ICOSLG is a relapse-predicting biomarker and therapeutic target in infant t(4;11) acute lymphoblastic leukemia.
Külp M, Siemund AL, Larghero P, Dietz A, Alten J, Cario G, Eckert C, Caye-Eude A, Cavé H, Bardini M, Cazzaniga G, De Lorenzo P, Valsecchi MG, Diehl L, Bonig H, Meyer C, Marschalek R. Külp M, et al. iScience. 2022 Jun 16;25(7):104613. doi: 10.1016/j.isci.2022.104613. eCollection 2022 Jul 15. iScience. 2022. PMID: 35800767 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources