Infection, dissemination, and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes - PubMed (original) (raw)
Infection, dissemination, and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes
Charles E McGee et al. Vector Borne Zoonotic Dis. 2010 Apr.
Abstract
We report the construction and comparative characterization of a full-length West Nile virus (WNV) cDNA infectious clone (ic) that contains a green fluorescent protein (GFP) expression cassette fused within the viral open reading frame. Virus derived from WNV-GFP ic stably infected Culex pipiens quinquefasciatus mosquitoes at comparable rates to virus derived from the parental (non-GFP) ic. However, insertion of this GFP cassette resulted in a temporal delay in in vivo replication kinetics and significantly decreased dissemination to head tissue. Consistent with previous reports of WNV-infected mosquito midguts, focal GFP expression was observed at 3 days post-infection (dpi), with the majority of posterior midgut epithelial cells being positive by 7 dpi. GFP foci were observed in one pair of salivary glands (1/15) dissected 14 dpi. Mice exposed to WNV-GFP-infected mosquitoes developed viremia, and GFP was detected in lymph node homogenates. These data demonstrate the effectiveness of our strategy to generate a replication competent construct with increased reporter gene stability that may be used to study early events in infection.
Figures
FIG. 1.
pBelo-WNV-GFP-RZ ic plasmid map. WNV, West Nile virus; GFP, green fluorescent protein; ic, infectious clone; RB2, rybozyme.
FIG. 2.
Average whole-body titers (expressed as log10TCID50/mosquito) of Culex pipiens quinquefasciatus mosquitoes infected (per os) with virus derived from either pBelo-WNV-RZ ic or pBelo-WNV-GFP ic. ▴, WNV-TX02 infectious bloodmeal titer 7.52 log10TCID50/mL; □, WNV-GFP infectious bloodmeal titer 6.95 log10TCID50/mL; •, WNV-GFP infectious bloodmeal titer 4.95 log10TCID50/mL. Mean titers calculated only from virus-positive mosquitoes. Error bars represent standard deviation about the mean. TCID, tissue culture infectious dose.
FIG. 3.
WNV-GFP in selected segments of the Cx. p. quinquefasciatus digestive tract. (A, B) Green foci at 3 days postinfection (dpi) distributed throughout the cardia/intussuscepted foregut, anterior, and posterior midgut. (C) WNV-GFP infectious foci in the posterior midgut 5 dpi. (D, E) GFP expression posterior in midguts 7 dpi.
FIG. 4.
Green fluorescent foci (A) in a Cx. p. quinquefasciatus salivary gland pair. (B) 14 days postingestion of a high-titer (6.95 log10 TCID50/mL) WNV-GFP infectious bloodmeal.
Similar articles
- West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus.
Girard YA, Klingler KA, Higgs S. Girard YA, et al. Vector Borne Zoonotic Dis. 2004 Summer;4(2):109-22. doi: 10.1089/1530366041210729. Vector Borne Zoonotic Dis. 2004. PMID: 15228811 - Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.
Göertz GP, Fros JJ, Miesen P, Vogels CBF, van der Bent ML, Geertsema C, Koenraadt CJM, van Rij RP, van Oers MM, Pijlman GP. Göertz GP, et al. J Virol. 2016 Oct 28;90(22):10145-10159. doi: 10.1128/JVI.00930-16. Print 2016 Nov 15. J Virol. 2016. PMID: 27581979 Free PMC article. - Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes.
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, Koenraadt CJM, Pijlman GP. Wang H, et al. Emerg Microbes Infect. 2020 Dec;9(1):2642-2652. doi: 10.1080/22221751.2020.1854623. Emerg Microbes Infect. 2020. PMID: 33215969 Free PMC article. - The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
Andreadis TG. Andreadis TG. J Am Mosq Control Assoc. 2012 Dec;28(4 Suppl):137-51. doi: 10.2987/8756-971X-28.4s.137. J Am Mosq Control Assoc. 2012. PMID: 23401954 Review. - [West Nile virus transmission risk in the Czech Republic].
Vlčková J, Rupeš V, Horáková D, Kollárová H, Holý O. Vlčková J, et al. Epidemiol Mikrobiol Imunol. 2015 Jun;64(2):80-6. Epidemiol Mikrobiol Imunol. 2015. PMID: 26099611 Review. Czech.
Cited by
- Validation of flavivirus infectious clones carrying fluorescent markers for antiviral drug screening and replication studies.
Cherkashchenko L, Gros N, Trausch A, Neyret A, Hénaut M, Dubois G, Villeneuve M, Chable-Bessia C, Lyonnais S, Merits A, Muriaux D. Cherkashchenko L, et al. Front Microbiol. 2023 Sep 15;14:1201640. doi: 10.3389/fmicb.2023.1201640. eCollection 2023. Front Microbiol. 2023. PMID: 37779700 Free PMC article. - Vector Competence of Culex quinquefasciatus from Brazil for West Nile Virus.
Reis LAM, Silva EVPD, Dias DD, Freitas MNO, Caldeira RD, Araújo PADS, Silva FSD, Rosa Junior JW, Brandão RCF, Nascimento BLSD, Martins LC, Neto JPN. Reis LAM, et al. Trop Med Infect Dis. 2023 Apr 6;8(4):217. doi: 10.3390/tropicalmed8040217. Trop Med Infect Dis. 2023. PMID: 37104343 Free PMC article. - Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion.
Torres FJ, Parry R, Hugo LE, Slonchak A, Newton ND, Vet LJ, Modhiran N, Pullinger B, Wang X, Potter J, Winterford C, Hobson-Peters J, Hall RA, Khromykh AA. Torres FJ, et al. Viruses. 2022 Jul 8;14(7):1501. doi: 10.3390/v14071501. Viruses. 2022. PMID: 35891480 Free PMC article. - Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes.
Gloria-Soria A, Brackney DE, Armstrong PM. Gloria-Soria A, et al. Parasit Vectors. 2022 Mar 24;15(1):103. doi: 10.1186/s13071-022-05198-7. Parasit Vectors. 2022. PMID: 35331315 Free PMC article. - Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain.
Wessel AW, Dowd KA, Biering SB, Zhang P, Edeling MA, Nelson CA, Funk KE, DeMaso CR, Klein RS, Smith JL, Cao TM, Kuhn RJ, Fremont DH, Harris E, Pierson TC, Diamond MS. Wessel AW, et al. J Virol. 2021 Sep 27;95(20):e0084421. doi: 10.1128/JVI.00844-21. Epub 2021 Aug 4. J Virol. 2021. PMID: 34346770 Free PMC article.
References
- Abbassy MM. Stein KJ. Osman M. New artificial feeding technique for experimental infection of Argas ticks (Acari: Argasidae) J Med Entomol. 1994;2:202–205. - PubMed
- Akhter R. Hayes CG. Baqar S. Reisen WK. West Nile virus in Pakistan. III. Comparative vector capability of Culex tritaeniorhynchus and eight other species of mosquitoes. Trans R Soc Trop Med Hyg. 1982;4:449–453. - PubMed
- Anderson JF. Main AJ. Andreadis TG. Wikel SK, et al. Transstadial transfer of West Nile virus by three species of ixodid ticks (Acari: Ixodidae) J Med Entomol. 2003;4:528–533. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- T01/CCT622892/PHS HHS/United States
- NIH T32 A107536/PHS HHS/United States
- NIH T32 AI 07526/AI/NIAID NIH HHS/United States
- R01 AI070207-05/AI/NIAID NIH HHS/United States
- T32 AI007526/AI/NIAID NIH HHS/United States
- T32 AI007536-12/AI/NIAID NIH HHS/United States
- T32 AI007526-12/AI/NIAID NIH HHS/United States
- R01 AI070207/AI/NIAID NIH HHS/United States
- AI070207/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources