Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules - PubMed (original) (raw)
. 2009 Sep 24;461(7263):533-6.
doi: 10.1038/nature08391. Epub 2009 Sep 9.
Affiliations
- PMID: 19741606
- DOI: 10.1038/nature08391
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules
Shuizi Rachel Yu et al. Nature. 2009.
Abstract
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Comment in
- Developmental biology: Rise of the source-sink model.
Schier AF, Needleman D. Schier AF, et al. Nature. 2009 Sep 24;461(7263):480-1. doi: 10.1038/461480a. Nature. 2009. PMID: 19779439 No abstract available.
Similar articles
- Developmental biology: Rise of the source-sink model.
Schier AF, Needleman D. Schier AF, et al. Nature. 2009 Sep 24;461(7263):480-1. doi: 10.1038/461480a. Nature. 2009. PMID: 19779439 No abstract available. - Endocytosis of Fgf8 is a double-stage process and regulates spreading and signaling.
Rengarajan C, Matzke A, Reiner L, Orian-Rousseau V, Scholpp S. Rengarajan C, et al. PLoS One. 2014 Jan 20;9(1):e86373. doi: 10.1371/journal.pone.0086373. eCollection 2014. PLoS One. 2014. PMID: 24466061 Free PMC article. - Visualization of an endogenous retinoic acid gradient across embryonic development.
Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A. Shimozono S, et al. Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7. Nature. 2013. PMID: 23563268 - Generation and interpretation of FGF morphogen gradients in vertebrates.
Bökel C, Brand M. Bökel C, et al. Curr Opin Genet Dev. 2013 Aug;23(4):415-22. doi: 10.1016/j.gde.2013.03.002. Epub 2013 May 10. Curr Opin Genet Dev. 2013. PMID: 23669552 Review. - Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain.
Sunmonu NA, Li K, Li JY. Sunmonu NA, et al. J Cell Physiol. 2011 Jul;226(7):1722-6. doi: 10.1002/jcp.22587. J Cell Physiol. 2011. PMID: 21506104 Free PMC article. Review.
Cited by
- HaloTag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors.
Sun C, Li Y, Taylor SE, Mao X, Wilkinson MC, Fernig DG. Sun C, et al. PeerJ. 2015 Jun 25;3:e1060. doi: 10.7717/peerj.1060. eCollection 2015. PeerJ. 2015. PMID: 26137434 Free PMC article. - GAP junctional communication in brain secondary organizers.
Bosone C, Andreu A, Echevarria D. Bosone C, et al. Dev Growth Differ. 2016 Jun;58(5):446-55. doi: 10.1111/dgd.12297. Epub 2016 Jun 8. Dev Growth Differ. 2016. PMID: 27273333 Free PMC article. Review. - Long-range formation of the Bicoid gradient requires multiple dynamic modes that spatially vary across the embryo.
Athilingam T, Nelanuthala AVS, Breen C, Karedla N, Fritzsche M, Wohland T, Saunders TE. Athilingam T, et al. Development. 2024 Feb 1;151(3):dev202128. doi: 10.1242/dev.202128. Epub 2024 Feb 12. Development. 2024. PMID: 38345326 Free PMC article. - Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate.
Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, Lounis B, Fernig DG. Duchesne L, et al. PLoS Biol. 2012 Jul;10(7):e1001361. doi: 10.1371/journal.pbio.1001361. Epub 2012 Jul 17. PLoS Biol. 2012. PMID: 22815649 Free PMC article. - Molecular control of macroscopic forces drives formation of the vertebrate hindgut.
Nerurkar NL, Lee C, Mahadevan L, Tabin CJ. Nerurkar NL, et al. Nature. 2019 Jan;565(7740):480-484. doi: 10.1038/s41586-018-0865-9. Epub 2019 Jan 16. Nature. 2019. PMID: 30651642 Free PMC article.
References
- Cell. 2000 Dec 8;103(6):981-91 - PubMed
- Nat Methods. 2006 Feb;3(2):83-9 - PubMed
- Development. 2000 Jan;127(2):225-35 - PubMed
- Dev Cell. 2007 Aug;13(2):226-41 - PubMed
- Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18403-7 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases