Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes - PubMed (original) (raw)
. 2009 Sep 10;461(7261):250-3.
doi: 10.1038/nature08266.
Affiliations
- PMID: 19741707
- DOI: 10.1038/nature08266
Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes
Robert Frei et al. Nature. 2009.
Abstract
Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between approximately 2.45 and 2.2 Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era ( approximately 800-542 Myr ago), ultimately leading to oxygenation of the deep ocean approximately 580 Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters approximately 2.8 to 2.6 Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event). In approximately 1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (delta(53)Cr up to +4.9 per thousand), providing independent support for increased surface oxygenation at that time, which may have stimulated rapid evolution of macroscopic multicellular life.
Comment in
- Early Earth: Oxygen for heavy-metal fans.
Lyons TW, Reinhard CT. Lyons TW, et al. Nature. 2009 Sep 10;461(7261):179-81. doi: 10.1038/461179a. Nature. 2009. PMID: 19741692 No abstract available.
Similar articles
- Oxidation of the Ediacaran ocean.
Fike DA, Grotzinger JP, Pratt LM, Summons RE. Fike DA, et al. Nature. 2006 Dec 7;444(7120):744-7. doi: 10.1038/nature05345. Nature. 2006. PMID: 17151665 - Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.
Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, Mojzsis SJ, Rouxel OJ, Barley ME, Rosìere C, Fralick PW, Kump LR, Bekker A. Konhauser KO, et al. Nature. 2011 Oct 19;478(7369):369-73. doi: 10.1038/nature10511. Nature. 2011. PMID: 22012395 - Atmospheric oxygenation three billion years ago.
Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE. Crowe SA, et al. Nature. 2013 Sep 26;501(7468):535-8. doi: 10.1038/nature12426. Nature. 2013. PMID: 24067713 - The oxygenation of the atmosphere and oceans.
Holland HD. Holland HD. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):903-15. doi: 10.1098/rstb.2006.1838. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 16754606 Free PMC article. Review. - The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
Hamilton TL, Bryant DA, Macalady JL. Hamilton TL, et al. Environ Microbiol. 2016 Feb;18(2):325-40. doi: 10.1111/1462-2920.13118. Epub 2015 Dec 21. Environ Microbiol. 2016. PMID: 26549614 Free PMC article. Review.
Cited by
- Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents.
Mavridi-Printezi A, Menichetti A, Mordini D, Amorati R, Montalti M. Mavridi-Printezi A, et al. Antioxidants (Basel). 2023 Apr 2;12(4):863. doi: 10.3390/antiox12040863. Antioxidants (Basel). 2023. PMID: 37107238 Free PMC article. Review. - Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution.
Saad EM, Wang X, Planavsky NJ, Reinhard CT, Tang Y. Saad EM, et al. Nat Commun. 2017 Nov 17;8(1):1590. doi: 10.1038/s41467-017-01694-y. Nat Commun. 2017. PMID: 29150598 Free PMC article. - Evidence for the oxidation of Earth's crust from the evolution of manganese minerals.
Hummer DR, Golden JJ, Hystad G, Downs RT, Eleish A, Liu C, Ralph J, Morrison SM, Meyer MB, Hazen RM. Hummer DR, et al. Nat Commun. 2022 Feb 18;13(1):960. doi: 10.1038/s41467-022-28589-x. Nat Commun. 2022. PMID: 35181670 Free PMC article. - The rise of oxygen in Earth's early ocean and atmosphere.
Lyons TW, Reinhard CT, Planavsky NJ. Lyons TW, et al. Nature. 2014 Feb 20;506(7488):307-15. doi: 10.1038/nature13068. Nature. 2014. PMID: 24553238 Review. - Geobiological feedbacks and the evolution of thermoacidophiles.
Colman DR, Poudel S, Hamilton TL, Havig JR, Selensky MJ, Shock EL, Boyd ES. Colman DR, et al. ISME J. 2018 Jan;12(1):225-236. doi: 10.1038/ismej.2017.162. Epub 2017 Oct 13. ISME J. 2018. PMID: 29028004 Free PMC article.
References
- Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6544-9 - PubMed
- Nature. 2004 Jan 8;427(6970):117-20 - PubMed
- Science. 2005 Feb 18;307(5712):1088-91 - PubMed
- Nature. 2006 Dec 7;444(7120):744-7 - PubMed
- Science. 2007 Sep 28;317(5846):1900-3 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources