Eukaryotic DNA replication control: lock and load, then fire - PubMed (original) (raw)
Review
Eukaryotic DNA replication control: lock and load, then fire
Dirk Remus et al. Curr Opin Cell Biol. 2009 Dec.
Abstract
The initiation of chromosomal DNA replication involves initiator proteins that recruit and load hexameric DNA helicases at replication origins. This helicase loading step is tightly regulated in bacteria and eukaryotes. In contrast to the situation in bacteria, the eukaryotic helicase is loaded in an inactive form. This extra 'lock and load' mechanism in eukaryotes allows regulation of a second step, helicase activation. The temporal separation of helicase loading and activation is crucial for the coordination of DNA replication with cell growth and extracellular signals, the prevention of re-replication and the control of origin activity in response to replication stress. Initiator proteins in bacteria and eukaryotes are structurally homologous; yet the replicative helicases they load are unrelated. Understanding how these helicases are loaded and how they act during unwinding may have important implications for understanding how DNA replication is regulated in different domains of life.
Similar articles
- Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS.
Watase G, Takisawa H, Kanemaki MT. Watase G, et al. Curr Biol. 2012 Feb 21;22(4):343-9. doi: 10.1016/j.cub.2012.01.023. Epub 2012 Jan 26. Curr Biol. 2012. PMID: 22285032 - Methods to study how replication fork helicases unwind DNA.
Kaplan DL, Bruck I. Kaplan DL, et al. Methods Mol Biol. 2010;587:127-35. doi: 10.1007/978-1-60327-355-8_9. Methods Mol Biol. 2010. PMID: 20225146 - Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate.
Jones JM, Nakai H. Jones JM, et al. J Mol Biol. 1999 Jun 11;289(3):503-16. doi: 10.1006/jmbi.1999.2783. J Mol Biol. 1999. PMID: 10356325 - Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication.
Li Y, Araki H. Li Y, et al. Genes Cells. 2013 Apr;18(4):266-77. doi: 10.1111/gtc.12040. Epub 2013 Mar 5. Genes Cells. 2013. PMID: 23461534 Free PMC article. Review. - Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM.
Masai H, You Z, Arai K. Masai H, et al. IUBMB Life. 2005 Apr-May;57(4-5):323-35. doi: 10.1080/15216540500092419. IUBMB Life. 2005. PMID: 16036617 Review.
Cited by
- Structural insights into the Cdt1-mediated MCM2-7 chromatin loading.
Liu C, Wu R, Zhou B, Wang J, Wei Z, Tye BK, Liang C, Zhu G. Liu C, et al. Nucleic Acids Res. 2012 Apr;40(7):3208-17. doi: 10.1093/nar/gkr1118. Epub 2011 Dec 2. Nucleic Acids Res. 2012. PMID: 22140117 Free PMC article. - Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation.
Zegerman P. Zegerman P. Chromosoma. 2015 Sep;124(3):309-21. doi: 10.1007/s00412-014-0500-y. Epub 2015 Jan 11. Chromosoma. 2015. PMID: 25575982 Review. - Eukaryotic replication origins: Strength in flexibility.
Kumar C, Remus D. Kumar C, et al. Nucleus. 2016 May 3;7(3):292-300. doi: 10.1080/19491034.2016.1187353. Nucleus. 2016. PMID: 27416360 Free PMC article. Review. - Preparation for DNA replication: the key to a successful S phase.
Limas JC, Cook JG. Limas JC, et al. FEBS Lett. 2019 Oct;593(20):2853-2867. doi: 10.1002/1873-3468.13619. Epub 2019 Oct 15. FEBS Lett. 2019. PMID: 31556113 Free PMC article. Review. - Regulation of the initiation step of DNA replication by cyclin-dependent kinases.
Tanaka S, Araki H. Tanaka S, et al. Chromosoma. 2010 Dec;119(6):565-74. doi: 10.1007/s00412-010-0291-8. Epub 2010 Aug 5. Chromosoma. 2010. PMID: 20686781 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases