Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists - PubMed (original) (raw)
. 2010 Feb 1;78(2):457-73.
doi: 10.1002/prot.22571.
Affiliations
- PMID: 19787776
- DOI: 10.1002/prot.22571
Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists
Brajesh K Rai et al. Proteins. 2010.
Abstract
G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that play important role in regulating key physiological functions, and are targets of about 50% of all recently launched drugs. High-resolution experimental structures are available only for very few GPCRs. As a result, structure-based drug design efforts for GPCRs continue to rely on in silico modeling, which is considered to be an extremely difficult task especially for these receptors. Here, we describe Gmodel, a novel approach for building 3D atomic models of GPCRs using a normal mode-based refinement of homology models. Gmodel uses a small set of relevant low-frequency vibrational modes derived from Random Elastic Network model to efficiently sample the large-scale receptor conformation changes and generate an ensemble of alternative models. These are used to assemble receptor-ligand complexes by docking a known active into each of the alternative models. Each of these is next filtered using restraints derived from known mutation and binding affinity data and is refined in the presence of the active ligand. In this study, Gmodel was applied to generate models of the antagonist form of histamine 3 (H3) receptor. The validity of this novel modeling approach is demonstrated by performing virtual screening (using the refined models) that consistently produces highly enriched hit lists. The models are further validated by analyzing the available SAR related to classical H3 antagonists, and are found to be in good agreement with the available experimental data, thus providing novel insights into the receptor-ligand interactions.
(c) 2009 Wiley-Liss, Inc.
Similar articles
- Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.
Istyastono EP, Nijmeijer S, Lim HD, van de Stolpe A, Roumen L, Kooistra AJ, Vischer HF, de Esch IJ, Leurs R, de Graaf C. Istyastono EP, et al. J Med Chem. 2011 Dec 8;54(23):8136-47. doi: 10.1021/jm201042n. Epub 2011 Nov 7. J Med Chem. 2011. PMID: 22003888 - Clobenpropit analogs as dual activity ligands for the histamine H3 and H4 receptors: synthesis, pharmacological evaluation, and cross-target QSAR studies.
Lim HD, Istyastono EP, van de Stolpe A, Romeo G, Gobbi S, Schepers M, Lahaye R, Menge WM, Zuiderveld OP, Jongejan A, Smits RA, Bakker RA, Haaksma EE, Leurs R, de Esch IJ. Lim HD, et al. Bioorg Med Chem. 2009 Jun 1;17(11):3987-94. doi: 10.1016/j.bmc.2009.04.007. Epub 2009 Apr 11. Bioorg Med Chem. 2009. PMID: 19414267 - Ligand identification for G-protein-coupled receptors: a lead generation perspective.
Bleicher KH, Green LG, Martin RE, Rogers-Evans M. Bleicher KH, et al. Curr Opin Chem Biol. 2004 Jun;8(3):287-96. doi: 10.1016/j.cbpa.2004.04.008. Curr Opin Chem Biol. 2004. PMID: 15183327 Review. - In vivo receptor occupancy assay of histamine H₃ receptor antagonist in rats using non-radiolabeled tracer.
Nirogi R, Kandikere V, Bhyrapuneni G, Muddana N, Saralaya R, Ponnamaneni RK, Manoharan AK. Nirogi R, et al. J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):115-21. doi: 10.1016/j.vascn.2012.03.003. Epub 2012 Apr 1. J Pharmacol Toxicol Methods. 2012. PMID: 22487318 - [Efficient Approaches to S-alkyl-N-alkylisothioureas and Application to Novel Histamine H3R Antagonists].
Yoneyama H, Yamamoto D, Yamatodani A, Harusawa S. Yoneyama H, et al. Yakugaku Zasshi. 2016;136(9):1217-32. doi: 10.1248/yakushi.16-00023. Yakugaku Zasshi. 2016. PMID: 27592826 Review. Japanese.
Cited by
- Computation of 3D queries for ROCS based virtual screens.
Tawa GJ, Baber JC, Humblet C. Tawa GJ, et al. J Comput Aided Mol Des. 2009 Dec;23(12):853-68. doi: 10.1007/s10822-009-9302-3. Epub 2009 Sep 26. J Comput Aided Mol Des. 2009. PMID: 19820902 - An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude.
Orts J, Bartoschek S, Griesinger C, Monecke P, Carlomagno T. Orts J, et al. J Biomol NMR. 2012 Jan;52(1):23-30. doi: 10.1007/s10858-011-9590-5. Epub 2011 Dec 14. J Biomol NMR. 2012. PMID: 22167466 Free PMC article. - Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology.
Hauwert NJ, Mocking TAM, Da Costa Pereira D, Kooistra AJ, Wijnen LM, Vreeker GCM, Verweij EWE, De Boer AH, Smit MJ, De Graaf C, Vischer HF, de Esch IJP, Wijtmans M, Leurs R. Hauwert NJ, et al. J Am Chem Soc. 2018 Mar 28;140(12):4232-4243. doi: 10.1021/jacs.7b11422. Epub 2018 Mar 14. J Am Chem Soc. 2018. PMID: 29470065 Free PMC article. - Ligand-based virtual screening approach using a new scoring function.
Hamza A, Wei NN, Zhan CG. Hamza A, et al. J Chem Inf Model. 2012 Apr 23;52(4):963-74. doi: 10.1021/ci200617d. Epub 2012 Apr 9. J Chem Inf Model. 2012. PMID: 22486340 Free PMC article. - A unique ligand-steered strategy for CC chemokine receptor 2 homology modeling to facilitate structure-based virtual screening.
Jin H, Xia J, Liu Z, Wang XS, Zhang L. Jin H, et al. Chem Biol Drug Des. 2021 Apr;97(4):944-961. doi: 10.1111/cbdd.13820. Epub 2021 Jan 16. Chem Biol Drug Des. 2021. PMID: 33386704 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous