Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria - PubMed (original) (raw)
. 2009 Oct 15;461(7266):976-9.
doi: 10.1038/nature08465. Epub 2009 Sep 30.
Affiliations
- PMID: 19794413
- DOI: 10.1038/nature08465
Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria
Willm Martens-Habbena et al. Nature. 2009.
Abstract
The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (<or=10 nM) closely resemble kinetics of in situ nitrification in marine systems and directly link ammonia-oxidizing Archaea to oligotrophic nitrification. The remarkably high specific affinity for reduced nitrogen (68,700 l per g cells per h) of SCM1 suggests that Nitrosopumilus-like ammonia-oxidizing Archaea could successfully compete with heterotrophic bacterioplankton and phytoplankton. Together these findings support the hypothesis that nitrification is more prevalent in the marine nitrogen cycle than accounted for in current biogeochemical models.
Similar articles
- Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.
Martens-Habbena W, Stahl DA. Martens-Habbena W, et al. Methods Enzymol. 2011;496:465-87. doi: 10.1016/B978-0-12-386489-5.00019-1. Methods Enzymol. 2011. PMID: 21514476 Review. - The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger.
Martens-Habbena W, Qin W, Horak RE, Urakawa H, Schauer AJ, Moffett JW, Armbrust EV, Ingalls AE, Devol AH, Stahl DA. Martens-Habbena W, et al. Environ Microbiol. 2015 Jul;17(7):2261-74. doi: 10.1111/1462-2920.12677. Epub 2015 Jan 27. Environ Microbiol. 2015. PMID: 25420929 - Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1.
Shafiee RT, Snow JT, Zhang Q, Rickaby REM. Shafiee RT, et al. ISME J. 2019 Sep;13(9):2295-2305. doi: 10.1038/s41396-019-0434-8. Epub 2019 May 10. ISME J. 2019. PMID: 31076641 Free PMC article. - Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle.
Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M. Kits KD, et al. Nature. 2017 Sep 14;549(7671):269-272. doi: 10.1038/nature23679. Epub 2017 Aug 23. Nature. 2017. PMID: 28847001 Free PMC article. - Ammonia-oxidizing archaea involved in nitrogen removal.
You J, Das A, Dolan EM, Hu Z. You J, et al. Water Res. 2009 Apr;43(7):1801-9. doi: 10.1016/j.watres.2009.01.016. Epub 2009 Jan 31. Water Res. 2009. PMID: 19232671 Review.
Cited by
- The Genomic Capabilities of Microbial Communities Track Seasonal Variation in Environmental Conditions of Arctic Lagoons.
Baker KD, Kellogg CTE, McClelland JW, Dunton KH, Crump BC. Baker KD, et al. Front Microbiol. 2021 Feb 12;12:601901. doi: 10.3389/fmicb.2021.601901. eCollection 2021. Front Microbiol. 2021. PMID: 33643234 Free PMC article. - Selective Enrichment of Nitrososphaera viennensis-Like Ammonia-Oxidizing Archaea over Ammonia-Oxidizing Bacteria from Drinking Water Biofilms.
Woo Y, Cruz MC, Wuertz S. Woo Y, et al. Microbiol Spectr. 2022 Dec 21;10(6):e0184522. doi: 10.1128/spectrum.01845-22. Epub 2022 Nov 29. Microbiol Spectr. 2022. PMID: 36445127 Free PMC article. - Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.
Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Singh BK. Delgado-Baquerizo M, et al. Front Microbiol. 2016 Apr 18;7:505. doi: 10.3389/fmicb.2016.00505. eCollection 2016. Front Microbiol. 2016. PMID: 27148194 Free PMC article. - Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant.
Sauder LA, Peterse F, Schouten S, Neufeld JD. Sauder LA, et al. Environ Microbiol. 2012 Sep;14(9):2589-600. doi: 10.1111/j.1462-2920.2012.02786.x. Epub 2012 May 29. Environ Microbiol. 2012. PMID: 22639927 Free PMC article. - Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters.
Ma C, Coffinet S, Lipp JS, Hinrichs KU, Zhang C. Ma C, et al. Front Microbiol. 2020 Jun 5;11:1034. doi: 10.3389/fmicb.2020.01034. eCollection 2020. Front Microbiol. 2020. PMID: 32582055 Free PMC article.
References
- Nature. 2008 Jan 17;451(7176):293-6 - PubMed
- Nature. 2006 Aug 17;442(7104):806-9 - PubMed
- Environ Microbiol. 2008 Mar;10(3):810-8 - PubMed
- J Bacteriol. 1974 Oct;120(1):556-8 - PubMed
- Environ Microbiol. 2008 Nov;10(11):2931-41 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources