Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) - PubMed (original) (raw)
Comparative Study
. 2010 Jan 15;49(2):1171-9.
doi: 10.1016/j.neuroimage.2009.09.063. Epub 2009 Oct 1.
Affiliations
- PMID: 19800409
- DOI: 10.1016/j.neuroimage.2009.09.063
Comparative Study
Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v)
Marcus Wilms et al. Neuroimage. 2010.
Abstract
Cytoarchitectonic maps of human striate and extrastriate visual cortex based upon post-mortem brains can be correlated with functionally defined cortical areas using, for example, fMRI. We here assess the correspondence of anatomical maps of the visual cortex with functionally defined in vivo visual areas using retinotopic mapping. To this end, anatomical maximum probability maps (aMPM) derived from individual cytoarchitectonic maps of striate and extrastriate visual areas were compared with functional localisers for the early visual areas. Using fMRI, we delineated dorsal and ventral human retinotopic areas V1, V2, and V3, as well as a quarter-field visual field representation lateral to V3v, V4(v), in 24 healthy subjects. Based on these individual definitions, a functional maximum probability map (fMPM) was then computed in analogy to the aMPM. Functional and anatomical MPMs were highly correlated at group level: 78.5% of activated voxels in the fMPM were correctly assigned by the aMPM. The group aMPM was less effective in predicting functional retinotopic areas in the individual brain due to the large inter-individual variability in the location and extent of visual areas (mean overlap 32-69%). We conclude that cytoarchitectonic maps of striate and extrastriate visual areas may provide a valuable method for assigning functional group activations and thus add valuable a priori knowledge to the analysis of functional imaging data of the visual cortex.
Similar articles
- Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2.
Wohlschläger AM, Specht K, Lie C, Mohlberg H, Wohlschläger A, Bente K, Pietrzyk U, Stöcker T, Zilles K, Amunts K, Fink GR. Wohlschläger AM, et al. Neuroimage. 2005 May 15;26(1):73-82. doi: 10.1016/j.neuroimage.2005.01.021. Neuroimage. 2005. PMID: 15862207 Clinical Trial. - Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.
Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, Zilles K, Niedeggen M, Tass PA. Barnikol UB, et al. Neuroimage. 2006 May 15;31(1):86-108. doi: 10.1016/j.neuroimage.2005.11.045. Epub 2006 Feb 15. Neuroimage. 2006. PMID: 16480895 - Retinotopic organization of striate and extrastriate visual cortex in the mouse.
Wagor E, Mangini NJ, Pearlman AL. Wagor E, et al. J Comp Neurol. 1980 Sep 1;193(1):187-202. doi: 10.1002/cne.901930113. J Comp Neurol. 1980. PMID: 6776164 - The cortical visual area V6 in macaque and human brains.
Fattori P, Pitzalis S, Galletti C. Fattori P, et al. J Physiol Paris. 2009 Jan-Mar;103(1-2):88-97. doi: 10.1016/j.jphysparis.2009.05.012. Epub 2009 Jun 10. J Physiol Paris. 2009. PMID: 19523515 Review. - Implications on visual apperception: energy, duration, structure and synchronization.
Bókkon I, Vimal RL. Bókkon I, et al. Biosystems. 2010 Jul;101(1):1-9. doi: 10.1016/j.biosystems.2010.04.008. Epub 2010 Apr 28. Biosystems. 2010. PMID: 20433895 Review.
Cited by
- Multi-Modal Enhancement Transformer Network for Skeleton-Based Human Interaction Recognition.
Hu Q, Liu H. Hu Q, et al. Biomimetics (Basel). 2024 Feb 20;9(3):123. doi: 10.3390/biomimetics9030123. Biomimetics (Basel). 2024. PMID: 38534808 Free PMC article. - Receptor architecture of macaque and human early visual areas: not equal, but comparable.
Rapan L, Niu M, Zhao L, Funck T, Amunts K, Zilles K, Palomero-Gallagher N. Rapan L, et al. Brain Struct Funct. 2022 May;227(4):1247-1263. doi: 10.1007/s00429-021-02437-y. Epub 2021 Dec 20. Brain Struct Funct. 2022. PMID: 34931262 Free PMC article. - Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.
Fernández E, Alfaro A, Soto-Sánchez C, Gonzalez-Lopez P, Lozano AM, Peña S, Grima MD, Rodil A, Gómez B, Chen X, Roelfsema PR, Rolston JD, Davis TS, Normann RA. Fernández E, et al. J Clin Invest. 2021 Dec 1;131(23):e151331. doi: 10.1172/JCI151331. J Clin Invest. 2021. PMID: 34665780 Free PMC article. - Abnormal Connectivity and Brain Structure in Patients With Visual Snow.
Aldusary N, Traber GL, Freund P, Fierz FC, Weber KP, Baeshen A, Alghamdi J, Saliju B, Pazahr S, Mazloum R, Alshehri F, Landau K, Kollias S, Piccirelli M, Michels L. Aldusary N, et al. Front Hum Neurosci. 2020 Nov 19;14:582031. doi: 10.3389/fnhum.2020.582031. eCollection 2020. Front Hum Neurosci. 2020. PMID: 33328934 Free PMC article. - Direct and reflected self-concept show increasing similarity across adolescence: A functional neuroimaging study.
Van der Cruijsen R, Peters S, Zoetendaal KPM, Pfeifer JH, Crone EA. Van der Cruijsen R, et al. Neuropsychologia. 2019 Jun;129:407-417. doi: 10.1016/j.neuropsychologia.2019.05.001. Epub 2019 May 8. Neuropsychologia. 2019. PMID: 31075284 Free PMC article.