CD133 expression defines a tumor initiating cell population in primary human ovarian cancer - PubMed (original) (raw)
. 2009 Dec;27(12):2875-83.
doi: 10.1002/stem.236.
Affiliations
- PMID: 19816957
- DOI: 10.1002/stem.236
CD133 expression defines a tumor initiating cell population in primary human ovarian cancer
Michael D Curley et al. Stem Cells. 2009 Dec.
Abstract
Evidence is accumulating that solid tumors contain a rare phenotypically distinct population of cells, termed cancer stem cells (CSC), which give rise to and maintain the bulk of the tumor. These CSC are thought to be resistant to current chemotherapeutic strategies due to their intrinsic stem-like properties and thus may provide the principal driving force behind recurrent tumor growth. Given the high frequency of recurrent metastasis associated with human ovarian cancer, we sought to determine whether primary human ovarian tumors contain populations of cells with enhanced tumor-initiating capacity, a characteristic of CSC. Using an in vivo serial transplantation model, we show that primary uncultured human ovarian tumors can be reliably propagated in NOD/SCID mice, generating heterogeneous tumors that maintain the histological integrity of the parental tumor. The observed frequency of tumor engraftment suggests only certain subpopulations of ovarian tumor cells have the capacity to recapitulate tumor growth. Further profiling of human ovarian tumors for expression of candidate CSC surface markers indicated consistent expression of CD133. To determine whether CD133 expression could define a tumor-initiating cell population in primary human ovarian tumors, fluorescence-activated cell sorting (FACS) methods were employed. Injection of sorted CD133(+) and CD133(-) cell populations into NOD/SCID mice established that tumor-derived CD133(+) cells have an increased tumorigenic capacity and are capable of recapitulating the original heterogeneous tumor. Our data indicate that CD133 expression defines a NOD/SCID tumor initiating subpopulation of cells in human ovarian cancer that may be an important target for new chemotherapeutic strategies aimed at eliminating ovarian cancer.
Similar articles
- Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival.
Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, Wicha MS, Buckanovich RJ. Silva IA, et al. Cancer Res. 2011 Jun 1;71(11):3991-4001. doi: 10.1158/0008-5472.CAN-10-3175. Epub 2011 Apr 15. Cancer Res. 2011. PMID: 21498635 Free PMC article. - ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma.
Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE. Kim MP, et al. PLoS One. 2011;6(6):e20636. doi: 10.1371/journal.pone.0020636. Epub 2011 Jun 13. PLoS One. 2011. PMID: 21695188 Free PMC article. - Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors.
Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG, Eramo A, Napoletano C, Gallo D, Perillo A, Nuti M, Pierelli L, Testa U, Scambia G, Ferrandina G. Rutella S, et al. Clin Cancer Res. 2009 Jul 1;15(13):4299-311. doi: 10.1158/1078-0432.CCR-08-1883. Epub 2009 Jun 9. Clin Cancer Res. 2009. PMID: 19509143 - The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells.
Bidlingmaier S, Zhu X, Liu B. Bidlingmaier S, et al. J Mol Med (Berl). 2008 Sep;86(9):1025-32. doi: 10.1007/s00109-008-0357-8. Epub 2008 Jun 6. J Mol Med (Berl). 2008. PMID: 18535813 Free PMC article. Review. - Research progression of CD133 as a marker of cancer stem cells.
Zhang H, Li SY. Zhang H, et al. Chin J Cancer. 2010 Mar;29(3):243-7. doi: 10.5732/cjc.009.10587. Chin J Cancer. 2010. PMID: 20193104 Review.
Cited by
- Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression.
Skubitz AP, Taras EP, Boylan KL, Waldron NN, Oh S, Panoskaltsis-Mortari A, Vallera DA. Skubitz AP, et al. Gynecol Oncol. 2013 Sep;130(3):579-87. doi: 10.1016/j.ygyno.2013.05.027. Epub 2013 May 27. Gynecol Oncol. 2013. PMID: 23721800 Free PMC article. - Influence of a novel histone deacetylase inhibitor panobinostat (LBH589) on the growth of ovarian cancer.
Garrett LA, Growdon WB, Rueda BR, Foster R. Garrett LA, et al. J Ovarian Res. 2016 Sep 15;9(1):58. doi: 10.1186/s13048-016-0267-2. J Ovarian Res. 2016. PMID: 27633667 Free PMC article. - Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma.
Chen X, Zhang J, Zhang Z, Li H, Cheng W, Liu J. Chen X, et al. Hum Pathol. 2013 Nov;44(11):2373-84. doi: 10.1016/j.humpath.2013.05.001. Epub 2013 Jul 11. Hum Pathol. 2013. PMID: 23850493 Free PMC article. Review. - An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer.
Janzen DM, Tiourin E, Salehi JA, Paik DY, Lu J, Pellegrini M, Memarzadeh S. Janzen DM, et al. Nat Commun. 2015 Aug 3;6:7956. doi: 10.1038/ncomms8956. Nat Commun. 2015. PMID: 26234182 Free PMC article. Retracted. - Growth kinetics of CD133-positive prostate cancer cells.
Reyes EE, Kunovac SK, Duggan R, Kregel S, Vander Griend DJ. Reyes EE, et al. Prostate. 2013 May;73(7):724-33. doi: 10.1002/pros.22616. Epub 2012 Nov 8. Prostate. 2013. PMID: 23138940 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials