Genome evolution and adaptation in a long-term experiment with Escherichia coli - PubMed (original) (raw)
. 2009 Oct 29;461(7268):1243-7.
doi: 10.1038/nature08480. Epub 2009 Oct 18.
Affiliations
- PMID: 19838166
- DOI: 10.1038/nature08480
Genome evolution and adaptation in a long-term experiment with Escherichia coli
Jeffrey E Barrick et al. Nature. 2009.
Abstract
The relationship between rates of genomic evolution and organismal adaptation remains uncertain, despite considerable interest. The feasibility of obtaining genome sequences from experimentally evolving populations offers the opportunity to investigate this relationship with new precision. Here we sequence genomes sampled through 40,000 generations from a laboratory population of Escherichia coli. Although adaptation decelerated sharply, genomic evolution was nearly constant for 20,000 generations. Such clock-like regularity is usually viewed as the signature of neutral evolution, but several lines of evidence indicate that almost all of these mutations were beneficial. This same population later evolved an elevated mutation rate and accumulated hundreds of additional mutations dominated by a neutral signature. Thus, the coupling between genomic and adaptive evolution is complex and can be counterintuitive even in a constant environment. In particular, beneficial substitutions were surprisingly uniform over time, whereas neutral substitutions were highly variable.
Comment in
- Evolutionary biology: Arrhythmia of tempo and mode.
Rainey PB. Rainey PB. Nature. 2009 Oct 29;461(7268):1219-21. doi: 10.1038/4611219a. Nature. 2009. PMID: 19865158 No abstract available.
Similar articles
- Tempo and mode of genome evolution in a 50,000-generation experiment.
Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S, Médigue C, Schneider D, Lenski RE. Tenaillon O, et al. Nature. 2016 Aug 11;536(7615):165-70. doi: 10.1038/nature18959. Epub 2016 Aug 1. Nature. 2016. PMID: 27479321 Free PMC article. - Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures.
Deatherage DE, Kepner JL, Bennett AF, Lenski RE, Barrick JE. Deatherage DE, et al. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1904-E1912. doi: 10.1073/pnas.1616132114. Epub 2017 Feb 15. Proc Natl Acad Sci U S A. 2017. PMID: 28202733 Free PMC article. - The dynamics of molecular evolution over 60,000 generations.
Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. Good BH, et al. Nature. 2017 Nov 2;551(7678):45-50. doi: 10.1038/nature24287. Epub 2017 Oct 18. Nature. 2017. PMID: 29045390 Free PMC article. - Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
Jerison ER, Desai MM. Jerison ER, et al. Curr Opin Genet Dev. 2015 Dec;35:33-9. doi: 10.1016/j.gde.2015.08.008. Epub 2015 Sep 14. Curr Opin Genet Dev. 2015. PMID: 26370471 Free PMC article. Review. - Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski RE. Lenski RE. ISME J. 2017 Oct;11(10):2181-2194. doi: 10.1038/ismej.2017.69. Epub 2017 May 16. ISME J. 2017. PMID: 28509909 Free PMC article. Review.
Cited by
- Partial disruption of translational and posttranslational machinery reshapes growth rates of Bartonella birtlesii.
Rolain JM, Vayssier-Taussat M, Saisongkorh W, Merhej V, Gimenez G, Robert C, Le Rhun D, Dehio C, Raoult D. Rolain JM, et al. mBio. 2013 Apr 23;4(2):e00115-13. doi: 10.1128/mBio.00115-13. mBio. 2013. PMID: 23611908 Free PMC article. - Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast.
Gerstein AC, Lo DS, Otto SP. Gerstein AC, et al. Genetics. 2012 Sep;192(1):241-52. doi: 10.1534/genetics.112.142620. Epub 2012 Jun 19. Genetics. 2012. PMID: 22714405 Free PMC article. - Fitness in time-dependent environments includes a geometric phase contribution.
Tanase-Nicola S, Nemenman I. Tanase-Nicola S, et al. J R Soc Interface. 2012 Jun 7;9(71):1354-62. doi: 10.1098/rsif.2011.0695. Epub 2011 Nov 23. J R Soc Interface. 2012. PMID: 22112653 Free PMC article. - Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes.
Kc R, Leong KWC, Harkness NM, Lachowicz J, Gautam SS, Cooley LA, McEwan B, Petrovski S, Karupiah G, O'Toole RF. Kc R, et al. Microb Genom. 2020 Aug;6(8):mgen000405. doi: 10.1099/mgen.0.000405. Epub 2020 Jul 24. Microb Genom. 2020. PMID: 32706329 Free PMC article. - Mutation accumulation and fitness in mutator subpopulations of Escherichia coli.
Maharjan RP, Liu B, Li Y, Reeves PR, Wang L, Ferenci T. Maharjan RP, et al. Biol Lett. 2012 Dec 5;9(1):20120961. doi: 10.1098/rsbl.2012.0961. Print 2013 Feb 23. Biol Lett. 2012. PMID: 23221876 Free PMC article.
References
- Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1072-7 - PubMed
- Nat Genet. 2006 Dec;38(12):1406-12 - PubMed
- Nature. 2009 Feb 12;457(7231):824-9 - PubMed
- Science. 2007 Aug 10;317(5839):813-5 - PubMed
- Nature. 2000 Oct 12;407(6805):736-9 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources