Antimicrobial properties of green tea catechins - PubMed (original) (raw)
Antimicrobial properties of green tea catechins
Peter W Taylor et al. Food Sci Technol Bull. 2005.
Abstract
Extracts of leaves from the tea plant Camellia sinensis contain polyphenolic components with activity against a wide spectrum of microbes. Studies conducted over the last 20 years have shown that the green tea polyphenolic catechins, in particular (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin gallate (ECg), can inhibit the growth of a wide range of Gram-positive and Gram-negative bacterial species with moderate potency. Evidence is emerging that these molecules may be useful in the control of common oral infections, such as dental caries and periodontal disease. Sub-inhibitory concentrations of EGCg and ECg can suppress the expression of bacterial virulence factors and can reverse the resistance of the opportunistic pathogen Staphylococcus aureus to beta-lactam antibiotics. For example, relatively low concentrations of ECg can sensitize methicillin-resistant S. aureus (MRSA) clinical isolates to levels of oxacillin that can be readily achieved in clinical practice. Catechin gallates such as ECg intercalate into phopsholipid bilayers and it is likely that they affect both virulence and antibiotic resistance by perturbing the function of key processes associated with the bacterial cytoplasmic membrane.
Figures
Figure 1
Structure of catechins. Ring nomenclature assignment is shown for ECg.
Figure 2
Space filling models of natural and synthetically modified catechins. (1) galloyl amide derivative of ECg; (2) monohydroxylated B-ring derivative of ECg. The colourless region is the hydrophobic domain and the dark coloured region the hydrophilic domain. Courtesy of Professor J.C. Anderson, University of Nottingham, UK.
Similar articles
- Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates.
Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Stapleton PD, et al. Int J Antimicrob Agents. 2004 May;23(5):462-7. doi: 10.1016/j.ijantimicag.2003.09.027. Int J Antimicrob Agents. 2004. PMID: 15120724 - Green tea catechins showed antibacterial activity on streptococcus mutans -An in vitro study.
Hattarki SA, Bogar C, Bhat KG. Hattarki SA, et al. Indian J Dent Res. 2021 Apr-Jun;32(2):226-229. doi: 10.4103/ijdr.ijdr_512_21. Indian J Dent Res. 2021. PMID: 34810394 - Evaluation of Camellia sinensis catechins as a swine antimicrobial feed additive that does not cause antibiotic resistance.
Ohno A, Kataoka S, Ishii Y, Terasaki T, Kiso M, Okubo M, Yamaguchi K, Tateda K. Ohno A, et al. Microbes Environ. 2013;28(1):81-6. doi: 10.1264/jsme2.me12137. Epub 2012 Nov 9. Microbes Environ. 2013. PMID: 23138151 Free PMC article. - The antimicrobial possibilities of green tea.
Reygaert WC. Reygaert WC. Front Microbiol. 2014 Aug 20;5:434. doi: 10.3389/fmicb.2014.00434. eCollection 2014. Front Microbiol. 2014. PMID: 25191312 Free PMC article. Review. - Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens.
Taylor PW. Taylor PW. Molecules. 2020 Apr 23;25(8):1986. doi: 10.3390/molecules25081986. Molecules. 2020. PMID: 32340372 Free PMC article. Review.
Cited by
- Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms.
Bai L, Takagi S, Ando T, Yoneyama H, Ito K, Mizugai H, Isogai E. Bai L, et al. J Vet Med Sci. 2016 Oct 1;78(9):1439-1445. doi: 10.1292/jvms.16-0198. Epub 2016 May 28. J Vet Med Sci. 2016. PMID: 27246281 Free PMC article. - Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids.
Saito H, Toyoda Y, Hirata H, Ota-Kontani A, Tsuchiya Y, Takada T, Suzuki H. Saito H, et al. Nutrients. 2020 Aug 14;12(8):2452. doi: 10.3390/nu12082452. Nutrients. 2020. PMID: 32824087 Free PMC article. - Adsorption Equilibrium and Thermodynamics of Tea Theasinensins on HP20-A High-Efficiency Macroporous Adsorption Resin.
Zhang J, Cui H, Xue J, Wang W, Wang W, Le T, Chen L, Engelhardt UH, Jiang H. Zhang J, et al. Foods. 2021 Dec 2;10(12):2971. doi: 10.3390/foods10122971. Foods. 2021. PMID: 34945522 Free PMC article. - Oral microbiota and cancer.
Meurman JH. Meurman JH. J Oral Microbiol. 2010 Aug 10;2. doi: 10.3402/jom.v2i0.5195. J Oral Microbiol. 2010. PMID: 21523227 Free PMC article. - Anti-staphylococcal activity and β-lactam resistance attenuating capacity of structural analogues of (-)-epicatechin gallate.
Anderson JC, McCarthy RA, Paulin S, Taylor PW. Anderson JC, et al. Bioorg Med Chem Lett. 2011 Dec 1;21(23):6996-7000. doi: 10.1016/j.bmcl.2011.09.116. Epub 2011 Oct 8. Bioorg Med Chem Lett. 2011. PMID: 22030031 Free PMC article.
References
- Agarwal R, Katiyar SK, Zaidi SI, Mukhtar H. Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives. Cancer Research. 1992;52:3582–3588. - PubMed
- Anderson JC, Headley C, Stapleton PD, Taylor PW. Asymmetric total synthesis of B-ring modified (−)-epicatechin gallate analogues and their modulation of β-lactam resistance in Staphylococcus aureus. Tetrahedron. 2005a;61:7703–7711. - PubMed
- Arakawa H, Maeda M, Okubo S, Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biological and Pharmaceutical Bulletin. 2004;27:277–281. - PubMed
- Bell SJ, Goodrick GK. A functional food product for the management of weight. Critical Reviews in Food Science and Nutrition. 2002;42:163–178. - PubMed
LinkOut - more resources
Full Text Sources