High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase - PubMed (original) (raw)
High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase
E Bustamante et al. Proc Natl Acad Sci U S A. 1977 Sep.
Abstract
A tumorigenic anchorage-dependent cell line (H-91) was established in culture from an azo-dye-induced rat ascites hepatoma. When grown in a glucose-containing medium the cells exhibit high rates of lactic acid production characteristic of rapidly growing tumor cells. However, when glucose is replaced with galactose the cells grow equally well but exhibit only moderately elevated rates of lactic acid production. The molecular basis for this observation cannot be attributed to differences in permeability because initial rates of glucose and galactose entry into hepatoma cells are identical. Rather, the activity of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) is found to be high in hepatoma cells, about 20-fold higher than that of control and regenerating rat liver. Moreover, tumor hexokinase activity is not inhibited by low concentrations (<0.6 mM) of the reaction product glucose 6-phosphate. Additionally, 50% of the hexokinase activity of hepatoma cells is found associated with the mitochondrial fraction. This fraction is 3-fold enriched in hexokinase activity relative to the homogenate and 4-fold enriched relative to the nuclear and postmitochondrial fractions. Tumor mitochondrial hexokinase appears to be coupled directly to oxidative phosphorylation, because addition of glucose to respiring hepatoma mitochondria (after a burst of ATP synthesis) results in stimulation of respiration. In contrast, glucose has no effect on the respiration of mitochondria from control and regenerating liver. These results suggest that the high glycolytic capacity of H-91 hepatoma cells is due, at least in part, to an elevated form of hexokinase concentrated in the mitochondrial fraction of the cell.
Similar articles
- Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding.
Bustamante E, Morris HP, Pedersen PL. Bustamante E, et al. J Biol Chem. 1981 Aug 25;256(16):8699-704. J Biol Chem. 1981. PMID: 7263678 - Hexokinase: the direct link between mitochondrial and glycolytic reactions in rapidly growing cancer cells.
Bustamente E, Morris HP, Pedersen PL. Bustamente E, et al. Adv Exp Med Biol. 1977 May 22-24;92:363-80. doi: 10.1007/978-1-4615-8852-8_15. Adv Exp Med Biol. 1977. PMID: 205103 No abstract available. - Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy.
Mathupala SP, Ko YH, Pedersen PL. Mathupala SP, et al. Semin Cancer Biol. 2009 Feb;19(1):17-24. doi: 10.1016/j.semcancer.2008.11.006. Epub 2008 Dec 3. Semin Cancer Biol. 2009. PMID: 19101634 Free PMC article. Review. - Hexokinase binding to mitochondria: a basis for proliferative energy metabolism.
Golshani-Hebroni SG, Bessman SP. Golshani-Hebroni SG, et al. J Bioenerg Biomembr. 1997 Aug;29(4):331-8. doi: 10.1023/a:1022442629543. J Bioenerg Biomembr. 1997. PMID: 9387093 Review.
Cited by
- Repurposing bioenergetic modulators against protozoan parasites responsible for tropical diseases.
Martínez-Flórez A, Galizzi M, Izquierdo L, Bustamante JM, Rodriguez A, Rodriguez F, Rodríguez-Cortés A, Alberola J. Martínez-Flórez A, et al. Int J Parasitol Drugs Drug Resist. 2020 Dec;14:17-27. doi: 10.1016/j.ijpddr.2020.07.002. Epub 2020 Jul 22. Int J Parasitol Drugs Drug Resist. 2020. PMID: 32829099 Free PMC article. - A metabolic phenotype based on mitochondrial ribosomal protein expression as a predictor of lymph node metastasis in papillary thyroid carcinoma.
Lee J, Seol MY, Jeong S, Lee CR, Ku CR, Kang SW, Jeong JJ, Shin DY, Nam KH, Lee EJ, Chung WY, Jo YS. Lee J, et al. Medicine (Baltimore). 2015 Jan;94(2):e380. doi: 10.1097/MD.0000000000000380. Medicine (Baltimore). 2015. PMID: 25590838 Free PMC article. - Aerobic glycolysis tunes YAP/TAZ transcriptional activity.
Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, Bicciato S, Dupont S. Enzo E, et al. EMBO J. 2015 May 12;34(10):1349-70. doi: 10.15252/embj.201490379. Epub 2015 Mar 21. EMBO J. 2015. PMID: 25796446 Free PMC article. - Hyperbaric oxygen therapy for malignancy: a review.
Daruwalla J, Christophi C. Daruwalla J, et al. World J Surg. 2006 Dec;30(12):2112-31. doi: 10.1007/s00268-006-0190-6. World J Surg. 2006. PMID: 17102915 Review. - Mitochondrial and nuclear genes of mitochondrial components in cancer.
Kirches E. Kirches E. Curr Genomics. 2009 Jun;10(4):281-93. doi: 10.2174/138920209788488517. Curr Genomics. 2009. PMID: 19949549 Free PMC article.
References
- Cancer Res. 1963 Aug;23:995-1002 - PubMed
- Am J Hyg. 1963 Sep;78:173-80 - PubMed
- J Biol Chem. 1959 May;234(5):1029-35 - PubMed
- J Biol Chem. 1958 Sep;233(3):551-8 - PubMed
- Biochem J. 1955 Mar;59(3):438-45 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources