Variegate porphyria induces plasma and neutrophil oxidative stress: effects of dietary supplementation with vitamins E and C - PubMed (original) (raw)

Clinical Trial

Variegate porphyria induces plasma and neutrophil oxidative stress: effects of dietary supplementation with vitamins E and C

Miguel D Ferrer et al. Br J Nutr. 2010 Jan.

Abstract

Our aim was to analyse the influence of variegate porphyria (VP) on the antioxidant defenses and markers of oxidative damage and inflammation in plasma and neutrophils and the effects of dietary supplementation with vitamins E and C on these parameters in plasma, neutrophils and erythrocytes. Twelve women affected by VP and twelve pair-matched healthy control women participated in a double-blind crossover study. Each participant took 50 mg/d of vitamin E and 150 mg/d of vitamin C, or a placebo, for 6 months, by consuming an almond-based beverage as the vehicle. Women affected by VP presented higher C-reactive protein and malondialdehyde (MDA) circulating levels. Plasma antioxidant defenses were not different between porphyric and control women. Neutrophils from VP women presented decreased catalase (CAT) and glutathione reductase (GR) activities together with increased protein carbonyl levels. Reactive oxygen species (ROS) production from stimulated neutrophils was also higher in porphyric women than their controls. Dietary supplementation was effective in increasing alpha-tocopherol levels in neutrophils and in reducing MDA levels in plasma. Erythrocyte CAT and GR activities were enhanced by the enriched beverage only in the control subjects. In conclusion, women affected by VP present a situation of inflammation, plasma oxidative damage and neutrophils more primed to the oxidative burst, with decreased antioxidant activities and increased ROS production capabilities and protein oxidative damage. Dietary supplementation with vitamin E (50 mg/d) and vitamin C (150 mg/d) for 6 months decreased plasma oxidative damage and enhanced the erythrocyte activities of CAT and GR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources