Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy - PubMed (original) (raw)

Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy

M Grootveld et al. Biochem J. 1991.

Abstract

Proton Hahn spin-echo n.m.r. spectroscopy was employed to detect abnormal metabolites present in rheumatoid synovial fluid that are derived from the deleterious generation of reactive oxygen radical species during exercise of the inflamed rheumatoid joint. A resonance attributable to a low-molecular-mass N-acetylglucosamine-containing oligosaccharide formed by the oxygen-radical-mediated depolymerization of synovial-fluid hyaluronate was clearly demonstrable when subjects with inflammatory joint disease were exercised. Moreover, formate, which may be derived from the attack of OH.radical on synovial-fluid carbohydrates, was also readily detectable in these samples. gamma-Radiolysis of rheumatoid synovial fluid samples and aqueous solutions of hyaluronate also gave rise to the production of the low-molecular-mass hyaluronate-derived oligosaccharide species and markedly elevated concentrations of (non-protein-bound) formate in the biological fluids. As expected, corresponding spectra of gamma-irradiated blood serum samples obtained from normal volunteers did not contain the signal attributable to the low-molecular-mass oligosaccharide species, but the formate resonance (barely detectable in non-irradiated normal serum samples) became clearly visible. Additionally, a curious increase in the effective concentration of non-protein-bound low-molecular-mass metabolites such as acetate, citrate, lactate and glutamine was observed after gamma-radiolysis of all biological fluids studied. The hyaluronate-derived low-molecular-mass oligosaccharide species and formate are suggested as novel markers of reactive oxygen radical activity in the inflamed rheumatoid joint during exercise-induced hypoxic/reperfusion injury.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ann Rheum Dis. 1985 Feb;44(2):83-8 - PubMed
    1. Lancet. 1989 Feb 11;1(8633):289-93 - PubMed
    1. FEBS Lett. 1987 Mar 9;213(1):9-14 - PubMed
    1. FEBS Lett. 1987 May 11;215(2):311-5 - PubMed
    1. Experientia. 1978 Dec 15;34(12):1545-6 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources