The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma - PubMed (original) (raw)
. 2009 Dec;8(23):3984-4001.
doi: 10.4161/cc.8.23.10238. Epub 2009 Dec 5.
Diana Whitaker-Menezes, Remedios Castello-Cros, Neal Flomenberg, Agnieszka K Witkiewicz, Philippe G Frank, Mathew C Casimiro, Chenguang Wang, Paolo Fortina, Sankar Addya, Richard G Pestell, Ubaldo E Martinez-Outschoorn, Federica Sotgia, Michael P Lisanti
Affiliations
- PMID: 19923890
- DOI: 10.4161/cc.8.23.10238
Free article
The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
Stephanos Pavlides et al. Cell Cycle. 2009 Dec.
Free article
Abstract
Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.
Similar articles
- Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP. Chiavarina B, et al. Cancer Biol Ther. 2011 Dec 15;12(12):1101-13. doi: 10.4161/cbt.12.12.18703. Epub 2011 Dec 15. Cancer Biol Ther. 2011. PMID: 22236875 Free PMC article. - Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Migneco G, et al. Cell Cycle. 2010 Jun 15;9(12):2412-22. doi: 10.4161/cc.9.12.11989. Epub 2010 Jun 15. Cell Cycle. 2010. PMID: 20562527 - The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Bonuccelli G, et al. Cell Cycle. 2010 May 15;9(10):1960-71. doi: 10.4161/cc.9.10.11601. Epub 2010 May 15. Cell Cycle. 2010. PMID: 20495363 - Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Martinez-Outschoorn U, Sotgia F, Lisanti MP. Martinez-Outschoorn U, et al. Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5. Semin Oncol. 2014. PMID: 24787293 Review. - Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP. Martinez-Outschoorn UE, et al. Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51. doi: 10.1016/j.biocel.2011.01.023. Epub 2011 Feb 15. Int J Biochem Cell Biol. 2011. PMID: 21300172 Free PMC article. Review.
Cited by
- Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP. Chiavarina B, et al. Cancer Biol Ther. 2011 Dec 15;12(12):1101-13. doi: 10.4161/cbt.12.12.18703. Epub 2011 Dec 15. Cancer Biol Ther. 2011. PMID: 22236875 Free PMC article. - Targeting the tumor stroma for cancer therapy.
Xu M, Zhang T, Xia R, Wei Y, Wei X. Xu M, et al. Mol Cancer. 2022 Nov 2;21(1):208. doi: 10.1186/s12943-022-01670-1. Mol Cancer. 2022. PMID: 36324128 Free PMC article. Review. - Therapeutic implications of targeting energy metabolism in breast cancer.
Sakharkar MK, Shashni B, Sharma K, Dhillon SK, Ranjekar PR, Sakharkar KR. Sakharkar MK, et al. PPAR Res. 2013;2013:109285. doi: 10.1155/2013/109285. Epub 2013 Feb 3. PPAR Res. 2013. PMID: 23431283 Free PMC article. - Cancer as a mitochondrial metabolic disease.
Seyfried TN. Seyfried TN. Front Cell Dev Biol. 2015 Jul 7;3:43. doi: 10.3389/fcell.2015.00043. eCollection 2015. Front Cell Dev Biol. 2015. PMID: 26217661 Free PMC article. - Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment.
Zhu Y, Li X, Wang L, Hong X, Yang J. Zhu Y, et al. Front Endocrinol (Lausanne). 2022 Aug 15;13:988295. doi: 10.3389/fendo.2022.988295. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 36046791 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
- P30-CA-56036/CA/NCI NIH HHS/United States
- R01-AR-055660/AR/NIAMS NIH HHS/United States
- R01-CA-098779/CA/NCI NIH HHS/United States
- R01-CA-107382/CA/NCI NIH HHS/United States
- R01-CA-120876/CA/NCI NIH HHS/United States
- R01-CA-70896/CA/NCI NIH HHS/United States
- R01-CA-75503/CA/NCI NIH HHS/United States
- R01-CA-80250/CA/NCI NIH HHS/United States
- R01-CA-86072/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical