Regulation of protein stability by GSK3 mediated phosphorylation - PubMed (original) (raw)
Regulation of protein stability by GSK3 mediated phosphorylation
Chong Xu et al. Cell Cycle. 2009.
Abstract
Glycogen synthase kinase-3 (GSK3) plays important roles in numerous signaling pathways that regulate a variety of cellular processes including cell proliferation, differentiation, apoptosis and embryonic development. In the canonical Wnt signaling pathway, GSK3 phosphorylation mediates proteasomal targeting and degradation of beta-catenin via the destruction complex. We recently reported a biochemical screen that discovered multiple additional protein substrates whose stability is regulated by Wnt signaling and/or GSK3 and these have important implications for Wnt/GSK3 regulation of different cellular processes.(1) In this article, we also present a bio-informatics based screen for proteins whose stability may be controlled by GSK3 and beta-Trcp, the SCF E3 ubiquitin ligase that is responsible for beta-catenin degradation in the Wnt signaling pathway. Furthermore, we review various GSK3 regulated proteolysis substrates described in the literature. We propose that GSK3 phosphorylation dependent proteolysis is a widespread mechanism that the cell employs to regulate a variety of cell processes in response to signals.
Figures
Figure 1
Potential GSK3 phosphorylation dependent protein degradation substrates identified in biochemical screen (modified from Fig. 3 in ref. 1). 35 novel proteolytic targets of Wnt and/or GSK3 identified in the screen are grouped according to their cellular functions. Proteins that are known to play roles in the canonical wnt signaling pathway are separated into one group.
Similar articles
- Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes.
Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM. Taelman VF, et al. Cell. 2010 Dec 23;143(7):1136-48. doi: 10.1016/j.cell.2010.11.034. Cell. 2010. PMID: 21183076 Free PMC article. - Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin.
Kim NG, Xu C, Gumbiner BM. Kim NG, et al. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5165-70. doi: 10.1073/pnas.0810185106. Epub 2009 Mar 16. Proc Natl Acad Sci U S A. 2009. PMID: 19289839 Free PMC article. - The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating Wnt-induced Axin degradation.
Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C, Bauer A, Xu W, Yan X, Cong F. Ji L, et al. Genes Dev. 2017 May 1;31(9):904-915. doi: 10.1101/gad.300053.117. Epub 2017 May 25. Genes Dev. 2017. PMID: 28546513 Free PMC article. - GSK3: a multifaceted kinase in Wnt signaling.
Wu D, Pan W. Wu D, et al. Trends Biochem Sci. 2010 Mar;35(3):161-8. doi: 10.1016/j.tibs.2009.10.002. Epub 2009 Oct 31. Trends Biochem Sci. 2010. PMID: 19884009 Free PMC article. Review. - A partnership with the proteasome; the destructive nature of GSK3.
Robertson H, Hayes JD, Sutherland C. Robertson H, et al. Biochem Pharmacol. 2018 Jan;147:77-92. doi: 10.1016/j.bcp.2017.10.016. Epub 2017 Nov 1. Biochem Pharmacol. 2018. PMID: 29102676 Free PMC article. Review.
Cited by
- Pharmacological inhibition of glycogen synthase kinase 3 regulates T cell development in vitro.
Schroeder JH, Bell LS, Janas ML, Turner M. Schroeder JH, et al. PLoS One. 2013;8(3):e58501. doi: 10.1371/journal.pone.0058501. Epub 2013 Mar 20. PLoS One. 2013. PMID: 23526989 Free PMC article. - Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress.
El Khattabi I, Sharma A. El Khattabi I, et al. Mol Endocrinol. 2013 Jul;27(7):1078-90. doi: 10.1210/me.2012-1346. Epub 2013 May 9. Mol Endocrinol. 2013. PMID: 23660596 Free PMC article. - Small Molecules in Development for the Treatment of Spinal Muscular Atrophy.
Calder AN, Androphy EJ, Hodgetts KJ. Calder AN, et al. J Med Chem. 2016 Nov 23;59(22):10067-10083. doi: 10.1021/acs.jmedchem.6b00670. Epub 2016 Aug 16. J Med Chem. 2016. PMID: 27490705 Free PMC article. Review. - Glycogen synthase kinase-3 and alternative splicing.
Liu X, Klein PS. Liu X, et al. Wiley Interdiscip Rev RNA. 2018 Nov;9(6):e1501. doi: 10.1002/wrna.1501. Epub 2018 Aug 17. Wiley Interdiscip Rev RNA. 2018. PMID: 30118183 Free PMC article. Review. - 6-Gingerol induces cell-cycle G1-phase arrest through AKT-GSK 3β-cyclin D1 pathway in renal-cell carcinoma.
Xu S, Zhang H, Liu T, Yang W, Lv W, He D, Guo P, Li L. Xu S, et al. Cancer Chemother Pharmacol. 2020 Feb;85(2):379-390. doi: 10.1007/s00280-019-03999-9. Epub 2019 Dec 12. Cancer Chemother Pharmacol. 2020. PMID: 31832810 Free PMC article.
References
- Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27. - PubMed
- Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001;2:769–76. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources