Machine learning in genome-wide association studies - PubMed (original) (raw)
Machine learning in genome-wide association studies
Silke Szymczak et al. Genet Epidemiol. 2009.
Free article
Abstract
Recently, genome-wide association studies have substantially expanded our knowledge about genetic variants that influence the susceptibility to complex diseases. Although standard statistical tests for each single-nucleotide polymorphism (SNP) separately are able to capture main genetic effects, different approaches are necessary to identify SNPs that influence disease risk jointly or in complex interactions. Experimental and simulated genome-wide SNP data provided by the Genetic Analysis Workshop 16 afforded an opportunity to analyze the applicability and benefit of several machine learning methods. Penalized regression, ensemble methods, and network analyses resulted in several new findings while known and simulated genetic risk variants were also identified. In conclusion, machine learning approaches are promising complements to standard single-and multi-SNP analysis methods for understanding the overall genetic architecture of complex human diseases. However, because they are not optimized for genome-wide SNP data, improved implementations and new variable selection procedures are required.
(c) 2009 Wiley-Liss, Inc.
Similar articles
- Data mining, neural nets, trees--problems 2 and 3 of Genetic Analysis Workshop 15.
Ziegler A, DeStefano AL, König IR, Bardel C, Brinza D, Bull S, Cai Z, Glaser B, Jiang W, Lee KE, Li CX, Li J, Li X, Majoram P, Meng Y, Nicodemus KK, Platt A, Schwarz DF, Shi W, Shugart YY, Stassen HH, Sun YV, Won S, Wang W, Wahba G, Zagaar UA, Zhao Z. Ziegler A, et al. Genet Epidemiol. 2007;31 Suppl 1:S51-60. doi: 10.1002/gepi.20280. Genet Epidemiol. 2007. PMID: 18046765 - Bayesian variable and model selection methods for genetic association studies.
Fridley BL. Fridley BL. Genet Epidemiol. 2009 Jan;33(1):27-37. doi: 10.1002/gepi.20353. Genet Epidemiol. 2009. PMID: 18618760 - Machine learning approaches for the discovery of gene-gene interactions in disease data.
Upstill-Goddard R, Eccles D, Fliege J, Collins A. Upstill-Goddard R, et al. Brief Bioinform. 2013 Mar;14(2):251-60. doi: 10.1093/bib/bbs024. Epub 2012 May 18. Brief Bioinform. 2013. PMID: 22611119 Review. - Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism.
Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Woo HJ, et al. BMC Genomics. 2016 Aug 30;17(1):695. doi: 10.1186/s12864-016-2871-3. BMC Genomics. 2016. PMID: 27576376 Free PMC article. - [Current status of SNPs interaction in genome-wide association study].
Li FG, Wang ZP, Hu G, Li H. Li FG, et al. Yi Chuan. 2011 Sep;33(9):901-10. doi: 10.3724/sp.j.1005.2011.00901. Yi Chuan. 2011. PMID: 21951789 Review. Chinese.
Cited by
- Pipeline design to identify key features and classify the chemotherapy response on lung cancer patients using large-scale genetic data.
Valdés MG, Galván-Femenía I, Ripoll VR, Duran X, Yokota J, Gavaldà R, Rafael-Palou X, de Cid R. Valdés MG, et al. BMC Syst Biol. 2018 Nov 20;12(Suppl 5):97. doi: 10.1186/s12918-018-0615-5. BMC Syst Biol. 2018. PMID: 30458782 Free PMC article. - A Random Forest-Based Genome-Wide Scan Reveals Fertility-Related Candidate Genes and Potential Inter-Chromosomal Epistatic Regions Associated With Age at First Calving in Nellore Cattle.
Alves AAC, da Costa RM, Fonseca LFS, Carvalheiro R, Ventura RV, Rosa GJM, Albuquerque LG. Alves AAC, et al. Front Genet. 2022 May 18;13:834724. doi: 10.3389/fgene.2022.834724. eCollection 2022. Front Genet. 2022. PMID: 35692843 Free PMC article. - Benefits and limitations of genome-wide association studies.
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Tam V, et al. Nat Rev Genet. 2019 Aug;20(8):467-484. doi: 10.1038/s41576-019-0127-1. Nat Rev Genet. 2019. PMID: 31068683 Review. - Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches.
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Alfayyadh MM, et al. Genes (Basel). 2024 Mar 31;15(4):443. doi: 10.3390/genes15040443. Genes (Basel). 2024. PMID: 38674378 Free PMC article. Review. - Logistic regression and other statistical tools in diagnostic biomarker studies.
Elkahwagy DMAS, Kiriacos CJ, Mansour M. Elkahwagy DMAS, et al. Clin Transl Oncol. 2024 Sep;26(9):2172-2180. doi: 10.1007/s12094-024-03413-8. Epub 2024 Mar 26. Clin Transl Oncol. 2024. PMID: 38530558 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources