Updated functional classification of beta-lactamases - PubMed (original) (raw)
Review
Updated functional classification of beta-lactamases
Karen Bush et al. Antimicrob Agents Chemother. 2010 Mar.
Abstract
Two classification schemes for beta-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides beta-lactamases into class A, C, and D enzymes which utilize serine for beta-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum beta-lactamases and serine carbapenemases; and group 3 metallo-beta-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new beta-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new beta-lactam-hydrolyzing enzyme.
Figures
FIG. 1.
Increase in numbers of group 1, 2, and 3 β-lactamases from 1970 to 2009. Shown are group 1/class C cephalosporinases (black), group 2/class A and class D β-lactamases (blue), and group 3/class B metallo-β-lactamases (red).
Similar articles
- β-Lactamases and β-Lactamase Inhibitors in the 21st Century.
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. Tooke CL, et al. J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub 2019 Apr 5. J Mol Biol. 2019. PMID: 30959050 Free PMC article. Review. - Potential involvement of beta-lactamase homologous proteins in resistance to beta-lactam antibiotics in gram-negative bacteria of the ESKAPEE group.
de Souza J, Vieira AZ, Dos Santos HG, Faoro H. de Souza J, et al. BMC Genomics. 2024 May 22;25(1):508. doi: 10.1186/s12864-024-10410-2. BMC Genomics. 2024. PMID: 38778284 Free PMC article. - Classification of beta-lactamases.
Bauernfeind A. Bauernfeind A. Rev Infect Dis. 1986 Nov-Dec;8 Suppl 5:S470-81. Rev Infect Dis. 1986. PMID: 3541132 Review. - beta-Lactamases of increasing clinical importance.
Bush K. Bush K. Curr Pharm Des. 1999 Nov;5(11):839-45. Curr Pharm Des. 1999. PMID: 10539991 Review. - The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria.
Walsh TR. Walsh TR. Clin Microbiol Infect. 2005 Nov;11 Suppl 6:2-9. doi: 10.1111/j.1469-0691.2005.01264.x. Clin Microbiol Infect. 2005. PMID: 16209700 Review.
Cited by
- Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline.
Boyd SE, Livermore DM, Hooper DC, Hope WW. Boyd SE, et al. Antimicrob Agents Chemother. 2020 Sep 21;64(10):e00397-20. doi: 10.1128/AAC.00397-20. Print 2020 Sep 21. Antimicrob Agents Chemother. 2020. PMID: 32690645 Free PMC article. Review. - Structural Basis and Binding Kinetics of Vaborbactam in Class A β-Lactamase Inhibition.
Pemberton OA, Tsivkovski R, Totrov M, Lomovskaya O, Chen Y. Pemberton OA, et al. Antimicrob Agents Chemother. 2020 Sep 21;64(10):e00398-20. doi: 10.1128/AAC.00398-20. Print 2020 Sep 21. Antimicrob Agents Chemother. 2020. PMID: 32778546 Free PMC article. - Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment.
Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Shaikh S, et al. Saudi J Biol Sci. 2015 Jan;22(1):90-101. doi: 10.1016/j.sjbs.2014.08.002. Epub 2014 Aug 17. Saudi J Biol Sci. 2015. PMID: 25561890 Free PMC article. - Genetic Determinants of Resistance among ESBL-Producing Enterobacteriaceae in Community and Hospital Settings in East, Central, and Southern Africa: A Systematic Review and Meta-Analysis of Prevalence.
Onduru OG, Mkakosya RS, Aboud S, Rumisha SF. Onduru OG, et al. Can J Infect Dis Med Microbiol. 2021 Jun 2;2021:5153237. doi: 10.1155/2021/5153237. eCollection 2021. Can J Infect Dis Med Microbiol. 2021. PMID: 34122680 Free PMC article. Review. - Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption.
Bhutani N, Muraleedharan C, Talreja D, Rana SW, Walia S, Kumar A, Walia SK. Bhutani N, et al. Biomed Res Int. 2015;2015:547547. doi: 10.1155/2015/547547. Epub 2015 May 3. Biomed Res Int. 2015. PMID: 26064922 Free PMC article.
References
- Ahmed, A. M., and T. Shimamoto. 2008. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC β-lactamase, CMY-37. Int. J. Antimicrob. Agents 32:256-261. - PubMed
- Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B 289:321-331. - PubMed
- Babini, G. S., F. Danel, S. D. Munro, P. A. Micklesen, and D. M. Livermore. 1998. Unusual tazobactam-sensitive AmpC β-lactamase from two Escherichia coli isolates. J. Antimicrob. Chemother. 41:115-118. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical