Updated functional classification of beta-lactamases - PubMed (original) (raw)

Review

Updated functional classification of beta-lactamases

Karen Bush et al. Antimicrob Agents Chemother. 2010 Mar.

Abstract

Two classification schemes for beta-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides beta-lactamases into class A, C, and D enzymes which utilize serine for beta-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum beta-lactamases and serine carbapenemases; and group 3 metallo-beta-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new beta-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new beta-lactam-hydrolyzing enzyme.

PubMed Disclaimer

Figures

FIG. 1.

FIG. 1.

Increase in numbers of group 1, 2, and 3 β-lactamases from 1970 to 2009. Shown are group 1/class C cephalosporinases (black), group 2/class A and class D β-lactamases (blue), and group 3/class B metallo-β-lactamases (red).

Similar articles

Cited by

References

    1. Ahmed, A. M., and T. Shimamoto. 2008. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC β-lactamase, CMY-37. Int. J. Antimicrob. Agents 32:256-261. - PubMed
    1. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B 289:321-331. - PubMed
    1. Ambler, R. P., A. F. W. Coulson, J.-M. Frère, J.-M. Ghuysen, B. Joris, M. Forsman, R. C. Levesque, G. Tiraby, and S. G. Waley. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276:269-272. - PMC - PubMed
    1. Aubert, D., L. Poirel, J. Chevalier, S. Leotard, J. M. Pages, and P. Nordmann. 2001. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45:1615-1620. - PMC - PubMed
    1. Babini, G. S., F. Danel, S. D. Munro, P. A. Micklesen, and D. M. Livermore. 1998. Unusual tazobactam-sensitive AmpC β-lactamase from two Escherichia coli isolates. J. Antimicrob. Chemother. 41:115-118. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources