Reshaping the cortical motor map by unmasking latent intracortical connections - PubMed (original) (raw)
. 1991 Feb 22;251(4996):944-7.
doi: 10.1126/science.2000496.
Affiliations
- PMID: 2000496
- DOI: 10.1126/science.2000496
Reshaping the cortical motor map by unmasking latent intracortical connections
K M Jacobs et al. Science. 1991.
Abstract
The primary motor cortex (MI) contains a map organized so that contralateral limb or facial movements are elicited by electrical stimulation within separate medial to lateral MI regions. Within hours of a peripheral nerve transection in adult rats, movements represented in neighboring MI areas are evoked from the cortical territory of the affected body part. One potential mechanism for reorganization is that adjacent cortical regions expand when preexisting lateral excitatory connections are unmasked by decreased intracortical inhibition. During pharmacological blockade of cortical inhibition in one part of the MI representation, movements of neighboring representations were evoked by stimulation in adjacent MI areas. These results suggest that intracortical connections form a substrate for reorganization of cortical maps and that inhibitory circuits are critically placed to maintain or readjust the form of cortical motor representations.
Similar articles
- Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations.
Sanes JN, Wang J, Donoghue JP. Sanes JN, et al. Cereb Cortex. 1992 Mar-Apr;2(2):141-52. doi: 10.1093/cercor/2.2.141. Cereb Cortex. 1992. PMID: 1633412 - Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats.
Donoghue JP, Sanes JN. Donoghue JP, et al. J Neurosci. 1988 Sep;8(9):3221-32. doi: 10.1523/JNEUROSCI.08-09-03221.1988. J Neurosci. 1988. PMID: 3171676 Free PMC article. - Functional organization of the human primary motor area: an update on current concepts.
Kawashima R, Fukuda H. Kawashima R, et al. Rev Neurosci. 1994 Oct-Dec;5(4):347-54. doi: 10.1515/revneuro.1994.5.4.347. Rev Neurosci. 1994. PMID: 7697202 Review. - Pharmacological inactivation in the analysis of the central control of movement.
Martin JH, Ghez C. Martin JH, et al. J Neurosci Methods. 1999 Jan;86(2):145-59. doi: 10.1016/s0165-0270(98)00163-0. J Neurosci Methods. 1999. PMID: 10065983 Review.
Cited by
- Inhibitory masking controls the threshold sensitivity of retinal ganglion cells.
Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Pan F, et al. J Physiol. 2016 Nov 15;594(22):6679-6699. doi: 10.1113/JP272267. Epub 2016 Aug 2. J Physiol. 2016. PMID: 27350405 Free PMC article. - Developmental timecourse of aptitude for motor skill learning in mouse.
Kim T, Hooks BM. Kim T, et al. bioRxiv [Preprint]. 2024 Dec 21:2024.07.19.604309. doi: 10.1101/2024.07.19.604309. bioRxiv. 2024. PMID: 39071410 Free PMC article. Preprint. - Inhibition of the cortex using transcranial magnetic stimulation in psychiatric populations: current and future directions.
Radhu N, Ravindran LN, Levinson AJ, Daskalakis ZJ. Radhu N, et al. J Psychiatry Neurosci. 2012 Nov;37(6):369-78. doi: 10.1503/jpn.120003. J Psychiatry Neurosci. 2012. PMID: 22663947 Free PMC article. Review. - Linear summation of cat motor cortex outputs.
Ethier C, Brizzi L, Darling WG, Capaday C. Ethier C, et al. J Neurosci. 2006 May 17;26(20):5574-81. doi: 10.1523/JNEUROSCI.5332-05.2006. J Neurosci. 2006. PMID: 16707808 Free PMC article. - Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation.
Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A. Fierro B, et al. J Physiol. 2005 Jun 1;565(Pt 2):659-65. doi: 10.1113/jphysiol.2004.080184. Epub 2005 Mar 10. J Physiol. 2005. PMID: 15760946 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources