Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies - PubMed (original) (raw)
Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies
Gina M D'Angelo et al. BMC Proc. 2009.
Abstract
Variable selection in genome-wide association studies can be a daunting task and statistically challenging because there are more variables than subjects. We propose an approach that uses principal-component analysis (PCA) and least absolute shrinkage and selection operator (LASSO) to identify gene-gene interaction in genome-wide association studies. A PCA was used to first reduce the dimension of the single-nucleotide polymorphisms (SNPs) within each gene. The interaction of the gene PCA scores were placed into LASSO to determine whether any gene-gene signals exist. We have extended the PCA-LASSO approach using the bootstrap to estimate the standard errors and confidence intervals of the LASSO coefficient estimates. This method was compared to placing the raw SNP values into the LASSO and the logistic model with individual gene-gene interaction. We demonstrated these methods with the Genetic Analysis Workshop 16 rheumatoid arthritis genome-wide association study data and our results identified a few gene-gene signals. Based on our results, the PCA-LASSO method shows promise in identifying gene-gene interactions, and, at this time we suggest using it with other conventional approaches, such as generalized linear models, to narrow down genetic signals.
Similar articles
- Fast and efficient correction for population stratification in multi-locus genome-wide association studies.
Liu R, Yuan M, Xu XS, Yang Y. Liu R, et al. Genetica. 2021 Dec;149(5-6):313-325. doi: 10.1007/s10709-021-00129-3. Epub 2021 Sep 4. Genetica. 2021. PMID: 34480683 - Comparison of three statistical approaches for feature selection for fine-scale genetic population assignment in four pig breeds.
Hayah I, Ababou M, Botti S, Badaoui B. Hayah I, et al. Trop Anim Health Prod. 2021 Jul 10;53(3):395. doi: 10.1007/s11250-021-02824-x. Trop Anim Health Prod. 2021. PMID: 34245361 - Practical issues in screening and variable selection in genome-wide association analysis.
Hong S, Kim Y, Park T. Hong S, et al. Cancer Inform. 2015 Jan 14;13(Suppl 7):55-65. doi: 10.4137/CIN.S16350. eCollection 2014. Cancer Inform. 2015. PMID: 25635166 Free PMC article. Review.
Cited by
- Systems biology data analysis methodology in pharmacogenomics.
Rodin AS, Gogoshin G, Boerwinkle E. Rodin AS, et al. Pharmacogenomics. 2011 Sep;12(9):1349-60. doi: 10.2217/pgs.11.76. Pharmacogenomics. 2011. PMID: 21919609 Free PMC article. Review. - Modeling of new markers for the diagnosis and prognosis of pancreatic cancer based on the transition from inflammation to cancer.
Zhou Y, Huang B, Zhang Q, Yu Y, Xiao J. Zhou Y, et al. Transl Cancer Res. 2024 Mar 31;13(3):1425-1442. doi: 10.21037/tcr-23-1365. Epub 2024 Mar 27. Transl Cancer Res. 2024. PMID: 38617519 Free PMC article. - The use of vector bootstrapping to improve variable selection precision in Lasso models.
Laurin C, Boomsma D, Lubke G. Laurin C, et al. Stat Appl Genet Mol Biol. 2016 Aug 1;15(4):305-20. doi: 10.1515/sagmb-2015-0043. Stat Appl Genet Mol Biol. 2016. PMID: 27248122 Free PMC article. - Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
Shi G, Boerwinkle E, Morrison AC, Gu CC, Chakravarti A, Rao DC. Shi G, et al. Genet Epidemiol. 2011 Feb;35(2):111-8. doi: 10.1002/gepi.20556. Epub 2010 Dec 31. Genet Epidemiol. 2011. PMID: 21254218 Free PMC article. - Testing gene-gene interactions in genome wide association studies.
Hu JK, Wang X, Wang P. Hu JK, et al. Genet Epidemiol. 2014 Feb;38(2):123-34. doi: 10.1002/gepi.21786. Epub 2014 Jan 15. Genet Epidemiol. 2014. PMID: 24431225 Free PMC article.
References
- Li KC. Sliced inverse regression for dimension reduction. J Am Stat Assoc. 1991;86:316–327. doi: 10.2307/2290563. - DOI
- Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 1996;58:267–288.
- Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat. 2004;32:407–499. doi: 10.1214/009053604000000067. - DOI
- Steyerberg EW, Eijkemans MJC, Habbema JDF. Application of shrinkage techniques in logistic regression analysis: a case study. Stat Neerl. 2001;55:76–88. doi: 10.1111/1467-9574.00157. - DOI
LinkOut - more resources
Full Text Sources