Casein-kinase-II-dependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol - PubMed (original) (raw)
. 2010 Jan 15;123(Pt 2):192-201.
doi: 10.1242/jcs.055475. Epub 2009 Dec 21.
Affiliations
- PMID: 20026644
- DOI: 10.1242/jcs.055475
Casein-kinase-II-dependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol
Andreas von Knethen et al. J Cell Sci. 2010.
Abstract
PPARgamma exerts significant anti-inflammatory signaling properties in monocytes and macrophages, which are affected by its intracellular localization. Based on our previous report, which showed that cytosolic localization of PPARgamma attenuates PKCalpha signaling in macrophages, we elucidated the molecular mechanisms provoking cytosolic PPARgamma localization. Using the DsRed-tagged PPARgamma deletion constructs PPARgamma1 Delta1-31 and PPARgamma1 Delta407-475, we observed an exclusive nuclear PPARgamma1 Delta1-31 localization in transfected HEK293 cells, whereas PPARgamma1 Delta407-475 did not alter its cytosolic or nuclear localization. The casein kinase II (CK-II) inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB) prevented cytosolic PPARgamma localization. Mutation of two possible CK-II phosphorylation sites at serine 16 and serine 21 of PPARgamma into alanine (PPARgamma S16A/S21A) inhibited cytosolic PPARgamma localization. Moreover, a PPARgamma S16E/S21E mutant that mimicks constitutive phosphorylation of residues 16 and 21, predominantly resides in the cytosol. The CRM1 inhibitor leptomycin B abolished cytosolic PPARgamma localization, suggesting that this is a CRM1-dependent export process. CRM1-mediated PPARgamma export requires Ran and phosphorylated RanBP3. Finally, co-immunoprecipitation studies demonstrated that DRB blocks PPARgamma binding to CRM1, whereas PD98059 inhibits RanBP3 binding to CRM1 and concomitant shuttling from nucleus to cytosol, but does not alter PPARgamma binding to CRM1. We conclude that CK-II-dependent PPARgamma phosphorylation at Ser16 and Ser21 is necessary for CRM1/Ran/RanBP3-mediated nucleocytoplasmic translocation of PPARgamma.
Similar articles
- Casein kinase II phosphorylation regulates alphaNAC subcellular localization and transcriptional coactivating activity.
Quélo I, Gauthier C, St-Arnaud R. Quélo I, et al. Gene Expr. 2005;12(3):151-63. doi: 10.3727/000000005783992070. Gene Expr. 2005. PMID: 16128000 Free PMC article. - Insights into the function of the CRM1 cofactor RanBP3 from the structure of its Ran-binding domain.
Langer K, Dian C, Rybin V, Müller CW, Petosa C. Langer K, et al. PLoS One. 2011 Feb 25;6(2):e17011. doi: 10.1371/journal.pone.0017011. PLoS One. 2011. PMID: 21364925 Free PMC article. - Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication.
Wang W, Budhu A, Forgues M, Wang XW. Wang W, et al. Nat Cell Biol. 2005 Aug;7(8):823-30. doi: 10.1038/ncb1282. Epub 2005 Jul 24. Nat Cell Biol. 2005. PMID: 16041368 - MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma.
Burgermeister E, Seger R. Burgermeister E, et al. Cell Cycle. 2007 Jul 1;6(13):1539-48. doi: 10.4161/cc.6.13.4453. Epub 2007 May 18. Cell Cycle. 2007. PMID: 17611413 Review. - [Structural basis for assembly and disassembly of the CRM1 nuclear export complex and its application to drug development].
Koyama M, Matsuura Y. Koyama M, et al. Seikagaku. 2015 Feb;87(1):41-8. Seikagaku. 2015. PMID: 26571554 Review. Japanese. No abstract available.
Cited by
- Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.
Ferro F, Spelat R, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Falini G, Beltrami CA, Curcio F. Ferro F, et al. PLoS One. 2012;7(7):e41774. doi: 10.1371/journal.pone.0041774. Epub 2012 Jul 23. PLoS One. 2012. PMID: 22844522 Free PMC article. - Cytoplasmic Colocalization of RXRα and PPARγ as an Independent Negative Prognosticator for Breast Cancer Patients.
Shao W, Köpke MB, Vilsmaier T, Zati Zehni A, Kessler M, Sixou S, Schneider M, Ditsch N, Cavaillès V, Jeschke U. Shao W, et al. Cells. 2022 Apr 6;11(7):1244. doi: 10.3390/cells11071244. Cells. 2022. PMID: 35406808 Free PMC article. - Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer.
Friedrich T, Söhn M, Gutting T, Janssen KP, Behrens HM, Röcken C, Ebert MPA, Burgermeister E. Friedrich T, et al. EBioMedicine. 2016 Jun;8:159-172. doi: 10.1016/j.ebiom.2016.05.003. Epub 2016 May 5. EBioMedicine. 2016. PMID: 27428427 Free PMC article. - Skp2 regulates subcellular localization of PPARγ by MEK signaling pathways in human breast cancer.
Cheng H, Meng J, Wang G, Meng Y, Li Y, Wei D, Fu C, Deng K, Shen A, Wang H, Dai S. Cheng H, et al. Int J Mol Sci. 2013 Aug 9;14(8):16554-69. doi: 10.3390/ijms140816554. Int J Mol Sci. 2013. PMID: 23939428 Free PMC article. - Design principles of nuclear receptor signaling: how complex networking improves signal transduction.
Kolodkin AN, Bruggeman FJ, Plant N, Moné MJ, Bakker BM, Campbell MJ, van Leeuwen JP, Carlberg C, Snoep JL, Westerhoff HV. Kolodkin AN, et al. Mol Syst Biol. 2010 Dec 21;6:446. doi: 10.1038/msb.2010.102. Mol Syst Biol. 2010. PMID: 21179018 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous