Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways - PubMed (original) (raw)
Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
Naama Tepper et al. Bioinformatics. 2010.
Abstract
Motivation: Computational modeling in metabolic engineering involves the prediction of genetic manipulations that would lead to optimized microbial strains, maximizing the production rate of chemicals of interest. Various computational methods are based on constraint-based modeling, which enables to anticipate the effect of genetic manipulations on cellular metabolism considering a genome-scale metabolic network. However, current methods do not account for the presence of competing pathways in a metabolic network that may diverge metabolic flux away from producing a required chemical, resulting in lower (or even zero) chemical production rates in reality-making these methods somewhat over optimistic.
Results: In this article, we describe a novel constraint-based method called RobustKnock that predicts gene deletion strategies that lead to the over-production of chemicals of interest, by accounting for the presence of competing pathways in the network. We describe results of applying RobustKnock to Escherichia coli's metabolic network towards the production of various chemicals, demonstrating its ability to provide more robust predictions than those obtained via current state-of-the-art methods.
Similar articles
- Multiobjective flux balancing using the NISE method for metabolic network analysis.
Oh YG, Lee DY, Lee SY, Park S. Oh YG, et al. Biotechnol Prog. 2009 Jul-Aug;25(4):999-1008. doi: 10.1002/btpr.193. Biotechnol Prog. 2009. PMID: 19572405 - In silico strategy to rationally engineer metabolite production: A case study for threonine in Escherichia coli.
Rodríguez-Prados JC, de Atauri P, Maury J, Ortega F, Portais JC, Chassagnole C, Acerenza L, Lindley ND, Cascante M. Rodríguez-Prados JC, et al. Biotechnol Bioeng. 2009 Jun 15;103(3):609-20. doi: 10.1002/bit.22271. Biotechnol Bioeng. 2009. PMID: 19219914 - Computing the shortest elementary flux modes in genome-scale metabolic networks.
de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ. de Figueiredo LF, et al. Bioinformatics. 2009 Dec 1;25(23):3158-65. doi: 10.1093/bioinformatics/btp564. Epub 2009 Sep 30. Bioinformatics. 2009. PMID: 19793869 - Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.
Toya Y, Shimizu H. Toya Y, et al. Biotechnol Adv. 2013 Nov;31(6):818-26. doi: 10.1016/j.biotechadv.2013.05.002. Epub 2013 May 13. Biotechnol Adv. 2013. PMID: 23680193 Review. - Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.
Yu C, Cao Y, Zou H, Xian M. Yu C, et al. Appl Microbiol Biotechnol. 2011 Feb;89(3):573-83. doi: 10.1007/s00253-010-2970-z. Epub 2010 Nov 4. Appl Microbiol Biotechnol. 2011. PMID: 21052988 Review.
Cited by
- A Combinatorial Algorithm for Microbial Consortia Synthetic Design.
Julien-Laferrière A, Bulteau L, Parrot D, Marchetti-Spaccamela A, Stougie L, Vinga S, Mary A, Sagot MF. Julien-Laferrière A, et al. Sci Rep. 2016 Jul 4;6:29182. doi: 10.1038/srep29182. Sci Rep. 2016. PMID: 27373593 Free PMC article. - Model validation and selection in metabolic flux analysis and flux balance analysis.
Kaste JAM, Shachar-Hill Y. Kaste JAM, et al. Biotechnol Prog. 2024 Jan-Feb;40(1):e3413. doi: 10.1002/btpr.3413. Epub 2023 Nov 24. Biotechnol Prog. 2024. PMID: 37997613 Free PMC article. Review. - The virus as metabolic engineer.
Maynard ND, Gutschow MV, Birch EW, Covert MW. Maynard ND, et al. Biotechnol J. 2010 Jul;5(7):686-94. doi: 10.1002/biot.201000080. Biotechnol J. 2010. PMID: 20665642 Free PMC article. Review. - Genome-Scale Metabolic Model of Actinosynnema pretiosum ATCC 31280 and Its Application for Ansamitocin P-3 Production Improvement.
Li J, Sun R, Ning X, Wang X, Wang Z. Li J, et al. Genes (Basel). 2018 Jul 20;9(7):364. doi: 10.3390/genes9070364. Genes (Basel). 2018. PMID: 30036981 Free PMC article. - Characterizing and ranking computed metabolic engineering strategies.
Schneider P, Klamt S. Schneider P, et al. Bioinformatics. 2019 Sep 1;35(17):3063-3072. doi: 10.1093/bioinformatics/bty1065. Bioinformatics. 2019. PMID: 30649194 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources