A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase - PubMed (original) (raw)
A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase
G L Wheeler et al. Proc Natl Acad Sci U S A. 1977 Oct.
Abstract
We have been studying the mechanism by which light and nucleoside triphosphates activate the discmembrane phosphodiesterase (oligonucleate 5'-nucleotidohydrolase; EC 3.1.4.1) in frog rod outer segments. GTP is orders of magnitude more effective than ATP as a cofactor in the light-dependent activation step. GTP and the analogue guanylyl-imidodiphosphate function equally as allosteric activators of photoreceptor phosphodiesterase rather than participating in the formation of a phosphorylated activator. Moreover, we have found a light-activated (5-fold) GTPase which participates in the modulation of photoreceptor phosphodiesterase. This GTPase activity appears necessary for the reversal of phosphodiesterase activation in vitro and may play a critical role in the in vivo regulation of light-sensitive phosphodiesterase. The K(m) for GTP in the light-activated GTPase reaction is <1 muM. The light sensitivity of this GTPase (number of photons required for half-maximal activation) is identical to that of light-activated phosphodiesterase. The GTPase action spectrum corresponds to the absorption spectrum of rhodopsin. There is, in addition, a light-insensitive GTPase activity with a K(m) for GTP of 90 muM. At GTP concentrations above 5 muM, there is no appreciable activation of GTPase activity by light. The substrate K(m) values for guanylate cyclase, light-activated GTPase, and light-activated phosphodiesterase order an enzyme array that might permit light to simultaneously cause the hydrolysis of both the substrate and product of guanylate cyclase. These findings reveal yet another facet of light regulation of photoreceptor/cyclic GMP levels and also provide a striking analogy to the GTP regulation of nonphotoreceptor, hormone-sensitive adenylate cyclase.
Similar articles
- Additional component required for activity and reconstitution of light-activated vertebrate photoreceptor GTPase.
Shinozawa T, Uchida S, Martin E, Cafiso D, Hubbell W, Bitensky M. Shinozawa T, et al. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1408-11. doi: 10.1073/pnas.77.3.1408. Proc Natl Acad Sci U S A. 1980. PMID: 6103534 Free PMC article. - Light-activated GTPase in vertebrate photoreceptors.
Wheeler GL, Matuto Y, Bitensky MW. Wheeler GL, et al. Nature. 1977 Oct 27;269(5631):822-4. doi: 10.1038/269822a0. Nature. 1977. PMID: 200847 No abstract available. - Homology between light-activated photoreceptor phosphodiesterase and hormone-activated adenylate cyclase systems.
Yamazaki A, Halliday KR, George JS, Nagao S, Kuo CH, Ailsworth KS, Bitensky MW. Yamazaki A, et al. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:113-24. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985. PMID: 2988294 Review. No abstract available. - The mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase.
Bitensky MW, Yamazaki A, Wheeler MA, George JS, Rasenick MM. Bitensky MW, et al. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:227-37. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984. PMID: 6328919 Review. No abstract available.
Cited by
- Additional component required for activity and reconstitution of light-activated vertebrate photoreceptor GTPase.
Shinozawa T, Uchida S, Martin E, Cafiso D, Hubbell W, Bitensky M. Shinozawa T, et al. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1408-11. doi: 10.1073/pnas.77.3.1408. Proc Natl Acad Sci U S A. 1980. PMID: 6103534 Free PMC article. - Exploring light and life.
Stryer L. Stryer L. J Biol Chem. 2012 May 4;287(19):15164-73. doi: 10.1074/jbc.X112.361436. Epub 2012 Mar 12. J Biol Chem. 2012. PMID: 22411992 Free PMC article. No abstract available. - Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments.
Nakano K, Chen J, Tarr GE, Yoshida T, Flynn JM, Bitensky MW. Nakano K, et al. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4693-8. doi: 10.1073/pnas.071067198. Epub 2001 Apr 3. Proc Natl Acad Sci U S A. 2001. PMID: 11287646 Free PMC article. - The effect of nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors.
Stern J, Chinn K, Robinson P, Lisman J. Stern J, et al. J Gen Physiol. 1985 Feb;85(2):157-69. doi: 10.1085/jgp.85.2.157. J Gen Physiol. 1985. PMID: 3981126 Free PMC article. - Short-circuiting the visual cycle with retinotoxic aromatic amines.
Bernstein PS, Lichtman JR, Rando RR. Bernstein PS, et al. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1632-5. doi: 10.1073/pnas.83.6.1632. Proc Natl Acad Sci U S A. 1986. PMID: 3485289 Free PMC article.
References
- Nature. 1974 Mar 1;248(5443):57-8 - PubMed
- Biochemistry. 1971 Jun 22;10(13):2606-17 - PubMed
- J Biol Chem. 1977 Jun 10;252(11):3766-74 - PubMed
- Biochemistry. 1975 Jun 17;14(12):2760-6 - PubMed
- Exp Eye Res. 1974 Mar;18(3):281-97 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials