Egr-1 deficiency in bone marrow-derived cells reduces atherosclerotic lesion formation in a hyperlipidaemic mouse model - PubMed (original) (raw)
. 2010 May 1;86(2):321-9.
doi: 10.1093/cvr/cvq032. Epub 2010 Jan 28.
Affiliations
- PMID: 20110335
- DOI: 10.1093/cvr/cvq032
Egr-1 deficiency in bone marrow-derived cells reduces atherosclerotic lesion formation in a hyperlipidaemic mouse model
Claudia Albrecht et al. Cardiovasc Res. 2010.
Abstract
Aims: Early growth response gene-1 (Egr-1) regulates the expression of genes important to cardiovascular disease. Within atherosclerotic lesions, Egr-1 is expressed in smooth muscle cells, endothelial cells, and macrophages. Since macrophages play a pivotal role in atherosclerotic lesion initiation and progression, this study investigated the effects of Egr-1 deficiency within bone marrow-derived cells on the development of atherosclerosis in a hyperlipidaemic mouse model.
Methods and results: Bone marrow from Egr-1-deficient mice and wild-type controls was transplanted into lethally irradiated LDL receptor null mice. After 26 weeks on a high fat diet, atherosclerotic lesion size within the aortic sinus of recipients was evaluated. Mice receiving Egr-1-deficient bone marrow had significantly decreased lesion size compared with controls. Lesions of these mice contained fewer macrophages and had reduced expression of vascular cell adhesion molecule-1 (VCAM-1), tissue factor, as well as transforming growth factor receptor type II, which are target genes of Egr-1. These results were validated by in vitro analysis of Egr-1-deficient peritoneal macrophages which, after lipopolysaccharide stimulation, had decreased VCAM-1 and tissue factor mRNA expression compared with wild-type controls.
Conclusion: This study demonstrates that bone marrow-derived Egr-1 promotes macrophage accumulation, atherosclerotic lesion development, and lesion complexity.
Similar articles
- Critical role of macrophages in glucocorticoid driven vascular calcification in a mouse-model of atherosclerosis.
Preusch MR, Rattazzi M, Albrecht C, Merle U, Tuckermann J, Schütz G, Blessing E, Zoppellaro G, Pauletto P, Krempien R, Rosenfeld ME, Katus HA, Bea F. Preusch MR, et al. Arterioscler Thromb Vasc Biol. 2008 Dec;28(12):2158-64. doi: 10.1161/ATVBAHA.108.174128. Epub 2008 Sep 11. Arterioscler Thromb Vasc Biol. 2008. PMID: 18787189 - Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice.
Potteaux S, Combadière C, Esposito B, Lecureuil C, Ait-Oufella H, Merval R, Ardouin P, Tedgui A, Mallat Z. Potteaux S, et al. Arterioscler Thromb Vasc Biol. 2006 Aug;26(8):1858-63. doi: 10.1161/01.ATV.0000231527.22762.71. Epub 2006 Jun 8. Arterioscler Thromb Vasc Biol. 2006. PMID: 16763157 - P55 tumour necrosis factor receptor in bone marrow-derived cells promotes atherosclerosis development in low-density lipoprotein receptor knock-out mice.
Xanthoulea S, Gijbels MJ, van der Made I, Mujcic H, Thelen M, Vergouwe MN, Ambagts MH, Hofker MH, de Winther MP. Xanthoulea S, et al. Cardiovasc Res. 2008 Nov 1;80(2):309-18. doi: 10.1093/cvr/cvn193. Epub 2008 Jul 15. Cardiovasc Res. 2008. PMID: 18628255 - Mouse models of hyperlipidemia and atherosclerosis.
Fazio S, Linton MF. Fazio S, et al. Front Biosci. 2001 Mar 1;6:D515-25. doi: 10.2741/fazio. Front Biosci. 2001. PMID: 11229870 Review. - Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques?
Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Kanter JE, et al. Circ Res. 2007 Mar 30;100(6):769-81. doi: 10.1161/01.RES.0000259589.34348.74. Circ Res. 2007. PMID: 17395883 Review.
Cited by
- A newly identified microRNA, mmu-miR-7578, functions as a negative regulator on inflammatory cytokines tumor necrosis factor-α and interleukin-6 via targeting Egr1 in vivo.
Zhang J, Xie S, Ma W, Teng Y, Tian Y, Huang X, Zhang Y. Zhang J, et al. J Biol Chem. 2013 Feb 8;288(6):4310-20. doi: 10.1074/jbc.M112.351197. Epub 2012 Nov 26. J Biol Chem. 2013. PMID: 23184950 Free PMC article. - Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury.
Khachigian LM. Khachigian LM. Int J Mol Sci. 2019 Oct 31;20(21):5445. doi: 10.3390/ijms20215445. Int J Mol Sci. 2019. PMID: 31683712 Free PMC article. Review. - Macrophage subsets in atherosclerosis as defined by single-cell technologies.
Willemsen L, de Winther MP. Willemsen L, et al. J Pathol. 2020 Apr;250(5):705-714. doi: 10.1002/path.5392. Epub 2020 Mar 11. J Pathol. 2020. PMID: 32003464 Free PMC article. Review. - MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways.
Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE. Cheng HS, et al. EMBO Mol Med. 2013 Jul;5(7):1017-34. doi: 10.1002/emmm.201202318. Epub 2013 Jun 3. EMBO Mol Med. 2013. PMID: 23733368 Free PMC article. - Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation.
Cheng HS, Njock MS, Khyzha N, Dang LT, Fish JE. Cheng HS, et al. Front Genet. 2014 Dec 10;5:422. doi: 10.3389/fgene.2014.00422. eCollection 2014. Front Genet. 2014. PMID: 25540650 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous