Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region - PubMed (original) (raw)
Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region
P Reddy et al. Cell. 1991.
Abstract
Genetic analysis showed that the conserved C-terminal 180 amino acids of yeast TFIID contain all the essential functions for growth of yeast and response to acidic transcriptional activation signals. A genetic screen was used to identify functionally important residues within this C-terminal region. Five dominant TFIID mutations were isolated that had lost the ability to bind DNA. Four of these mutations were single amino acid substitutions in the most N-terminal of two 66-67 amino acid repeats in TFIID. Analogous mutations made in the most C-terminal repeat all failed to bind DNA and inhibited growth of cells, suggesting that the DNA-binding function of TFIID is partitioned between the two repeated regions. Overproduction of wild-type TFIID rescued the dominance of the TFIID mutants, suggesting that the mutant proteins are dominant because they compete with wild-type TFIID for binding to one or more essential transcription factors.
Similar articles
- Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro.
Arndt KM, Ricupero SL, Eisenmann DM, Winston F. Arndt KM, et al. Mol Cell Biol. 1992 May;12(5):2372-82. doi: 10.1128/mcb.12.5.2372-2382.1992. Mol Cell Biol. 1992. PMID: 1569955 Free PMC article. - Yeast and human TFIID with altered DNA-binding specificity for TATA elements.
Strubin M, Struhl K. Strubin M, et al. Cell. 1992 Feb 21;68(4):721-30. doi: 10.1016/0092-8674(92)90147-5. Cell. 1992. PMID: 1739977 - A bipartite DNA binding domain composed of direct repeats in the TATA box binding factor TFIID.
Yamamoto T, Horikoshi M, Wang J, Hasegawa S, Weil PA, Roeder RG. Yamamoto T, et al. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2844-8. doi: 10.1073/pnas.89.7.2844. Proc Natl Acad Sci U S A. 1992. PMID: 1557391 Free PMC article. - Requirement for acidic amino acid residues immediately N-terminal to the conserved domain of Saccharomyces cerevisiae TFIID.
Zhou QA, Schmidt MC, Berk AJ. Zhou QA, et al. EMBO J. 1991 Jul;10(7):1843-52. doi: 10.1002/j.1460-2075.1991.tb07710.x. EMBO J. 1991. PMID: 2050121 Free PMC article. - An element of symmetry in yeast TATA-box binding protein transcription factor IID. Consequence of an ancestral duplication?
Stucka R, Feldmann H. Stucka R, et al. FEBS Lett. 1990 Feb 26;261(2):223-5. doi: 10.1016/0014-5793(90)80558-z. FEBS Lett. 1990. PMID: 2178970 Review.
Cited by
- A novel male sterility-fertility restoration system in plants for hybrid seed production.
Singh SP, Singh SP, Pandey T, Singh RR, Sawant SV. Singh SP, et al. Sci Rep. 2015 Jun 15;5:11274. doi: 10.1038/srep11274. Sci Rep. 2015. PMID: 26073981 Free PMC article. - The conserved carboxy-terminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth.
Poon D, Schroeder S, Wang CK, Yamamoto T, Horikoshi M, Roeder RG, Weil PA. Poon D, et al. Mol Cell Biol. 1991 Oct;11(10):4809-21. doi: 10.1128/mcb.11.10.4809-4821.1991. Mol Cell Biol. 1991. PMID: 1922021 Free PMC article. - A TATA binding protein regulatory network that governs transcription complex assembly.
Huisinga KL, Pugh BF. Huisinga KL, et al. Genome Biol. 2007;8(4):R46. doi: 10.1186/gb-2007-8-4-r46. Genome Biol. 2007. PMID: 17407552 Free PMC article. - Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.
Han Y, Luo J, Ranish J, Hahn S. Han Y, et al. EMBO J. 2014 Nov 3;33(21):2534-46. doi: 10.15252/embj.201488638. Epub 2014 Sep 12. EMBO J. 2014. PMID: 25216679 Free PMC article. - SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment.
Mitra D, Parnell EJ, Landon JW, Yu Y, Stillman DJ. Mitra D, et al. Mol Cell Biol. 2006 Jun;26(11):4095-110. doi: 10.1128/MCB.01849-05. Mol Cell Biol. 2006. PMID: 16705163 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases