Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation - PubMed (original) (raw)
. 1991 Mar;225(3):448-52.
doi: 10.1007/BF00261686.
Affiliations
- PMID: 2017139
- DOI: 10.1007/BF00261686
Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation
G L Dianov et al. Mol Gen Genet. 1991 Mar.
Abstract
The role of closely spaced lesions on both DNA strands in the induction of double-strand breaks and formation of deletions was studied. For this purpose a polylinker sequence flanked by 165 bp direct repeats was inserted within the tet gene of pBR327. This plasmid was used to construct DNA containing one or two uracil residues which replaced cytosine residues in the KpnI restriction site of the polylinker. Incubation of the plasmid DNA construct with Escherichia coli cell-free extracts showed that double-strand breaks occurred as a result of excision repair of the opposing uracil residues by uracil-DNA glycosylase (in extracts from ung+ but not in extracts from ung- E. coli strains). Recombination of direct repeats, induced by double-strand breakage of plasmid DNA, can lead to the deletion of the polylinker and of one of the direct repeats, thus restoring the tet+ gene function which can be detected by the appearance of tetracycline-resistant colonies of transformants. Transformation of E. coli cells with single or double uracil-containing DNAs demonstrated that DNA containing two closely spaced uracil residues was tenfold more effective in the induction of deletions than DNA containing only a single uracil residue. The frequency of deletions is increased tenfold in an ung+ E. coli strain in comparison with an ung- strain, suggesting that deletions are induced by double-strand breakage of plasmid DNA which occurs in vivo as a result of the excision of opposing uracil residues.
Similar articles
- Uracil-DNA glycosylase affects mismatch repair efficiency in transformation and bisulfite-induced mutagenesis in Streptococcus pneumoniae.
Méjean V, Devedjian JC, Rives I, Alloing G, Claverys JP. Méjean V, et al. Nucleic Acids Res. 1991 Oct 25;19(20):5525-31. doi: 10.1093/nar/19.20.5525. Nucleic Acids Res. 1991. PMID: 1945830 Free PMC article. - The post-incision steps of the DNA base excision repair pathway in Escherichia coli: studies with a closed circular DNA substrate containing a single U:G base pair.
Sandigursky M, Freyer GA, Franklin WA. Sandigursky M, et al. Nucleic Acids Res. 1998 Mar 1;26(5):1282-7. doi: 10.1093/nar/26.5.1282. Nucleic Acids Res. 1998. PMID: 9469838 Free PMC article. - Role of uracil-DNA glycosylase in mutation avoidance by Streptococcus pneumoniae.
Chen JD, Lacks SA. Chen JD, et al. J Bacteriol. 1991 Jan;173(1):283-90. doi: 10.1128/jb.173.1.283-290.1991. J Bacteriol. 1991. PMID: 1987120 Free PMC article. - Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma LoVo and Escherichia coli cell extracts.
Sanderson RJ, Bennett SE, Sung JS, Mosbaugh DW. Sanderson RJ, et al. Prog Nucleic Acid Res Mol Biol. 2001;68:165-88. doi: 10.1016/s0079-6603(01)68098-x. Prog Nucleic Acid Res Mol Biol. 2001. PMID: 11554295 Review. - Double-strand breaks in plasmid DNA and the induction of deletions.
Schulte-Frohlinde D, Worm KH, Merz M. Schulte-Frohlinde D, et al. Mutat Res. 1993 May;299(3-4):233-50. doi: 10.1016/0165-1218(93)90100-r. Mutat Res. 1993. PMID: 7683091 Review.
Cited by
- Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival.
Sage E, Harrison L. Sage E, et al. Mutat Res. 2011 Jun 3;711(1-2):123-33. doi: 10.1016/j.mrfmmm.2010.12.010. Epub 2010 Dec 24. Mutat Res. 2011. PMID: 21185841 Free PMC article. Review. - Methylenetetrahydrofolate reductase polymorphisms, serum methylenetetrahydrofolate reductase levels, and risk of childhood acute lymphoblastic leukemia in a Chinese population.
Tong N, Fang Y, Li J, Wang M, Lu Q, Wang S, Tian Y, Rong L, Sun J, Xu J, Zhang Z. Tong N, et al. Cancer Sci. 2010 Mar;101(3):782-6. doi: 10.1111/j.1349-7006.2009.01429.x. Epub 2009 Nov 11. Cancer Sci. 2010. PMID: 20002681 Free PMC article. - Genetic polymorphisms in the methylenetetrahydrofolate reductase and thymidylate synthase genes and risk of hepatocellular carcinoma.
Yuan JM, Lu SC, Van Den Berg D, Govindarajan S, Zhang ZQ, Mato JM, Yu MC. Yuan JM, et al. Hepatology. 2007 Sep;46(3):749-58. doi: 10.1002/hep.21735. Hepatology. 2007. PMID: 17659576 Free PMC article. - Repair of clustered uracil DNA damages in Escherichia coli.
D'souza DI, Harrison L. D'souza DI, et al. Nucleic Acids Res. 2003 Aug 1;31(15):4573-81. doi: 10.1093/nar/gkg493. Nucleic Acids Res. 2003. PMID: 12888518 Free PMC article. - Linking high GC content to the repair of double strand breaks in prokaryotic genomes.
Weissman JL, Fagan WF, Johnson PLF. Weissman JL, et al. PLoS Genet. 2019 Nov 8;15(11):e1008493. doi: 10.1371/journal.pgen.1008493. eCollection 2019 Nov. PLoS Genet. 2019. PMID: 31703064 Free PMC article.
References
- Photochem Photobiol. 1968 Jan;7(1):73-86 - PubMed
- Dokl Akad Nauk SSSR. 1987 Sep-Oct;296(1):226-30 - PubMed
- Mol Cell Biol. 1984 Jun;4(6):1020-34 - PubMed
- Mol Gen Genet. 1991 Aug;228(1-2):209-14 - PubMed
- J Bacteriol. 1975 Jan;121(1):259-66 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources