Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria - PubMed (original) (raw)
Review
Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria
Kaarina Sivonen et al. Appl Microbiol Biotechnol. 2010 May.
Abstract
Cyanobactins are small cyclic peptides that are produced by a diverse selection of cyanobacteria living in symbioses as well as terrestrial, marine, or freshwater environments. They include compounds with antimalarial, antitumor, and multidrug reversing activities and potential as pharmaceutical leads. Cyanobactins are produced through the proteolytic cleavage and cyclization of precursor peptides coupled with further posttranslational modifications such as heterocyclization, oxidation, or prenylation of amino acids. Cyanobactin gene clusters encode two proteases which cleave and cyclisize the precursor peptide as well as proteins participating in posttranslational modifications. The bioinformatic mining of cyanobacterial genomes has led to the discovery of novel cyanobactins. Heterologous expression of these gene clusters provided insights into the role of the genes participating in the biosynthesis of cyanobactins and facilitated the rational design of novel peptides. Enzymes participating in the biosynthesis of cyanobactins may prove useful as catalysts for producing novel cyclic peptides in the future. The recent discovery of the cyanobactin biosynthetic pathway in cyanobacteria extends our knowledge of their potential as producers of interesting metabolites.
Figures
Fig. 1
The chemical structures of a selection of cyanobactins. Trunkamide was isolated from L. patella, tenuecyclamide from N. spongiaeforme, anacyclamide from Anabaena, trichamide from T. erythraeum, and ulithiacyclamide and patellamide from Prochloron (originally from L. patella). The corresponding biosynthetic gene clusters are shown in Fig. 2
Fig. 2
Cyanobactin gene clusters published from seven distantly related cyanobacteria. These gene clusters are typified by genes encoding proteases (yellow), a short precursor peptide (red), proteins involved in the maturation of the cyanobactin (black), as well as conserved and hypothetical open reading frames (white)
Similar articles
- Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
Leikoski N, Liu L, Jokela J, Wahlsten M, Gugger M, Calteau A, Permi P, Kerfeld CA, Sivonen K, Fewer DP. Leikoski N, et al. Chem Biol. 2013 Aug 22;20(8):1033-43. doi: 10.1016/j.chembiol.2013.06.015. Epub 2013 Aug 1. Chem Biol. 2013. PMID: 23911585 - A global assembly line for cyanobactins.
Donia MS, Ravel J, Schmidt EW. Donia MS, et al. Nat Chem Biol. 2008 Jun;4(6):341-3. doi: 10.1038/nchembio.84. Epub 2008 Apr 20. Nat Chem Biol. 2008. PMID: 18425112 Free PMC article. - Marine molecular machines: heterocyclization in cyanobactin biosynthesis.
McIntosh JA, Schmidt EW. McIntosh JA, et al. Chembiochem. 2010 Jul 5;11(10):1413-21. doi: 10.1002/cbic.201000196. Chembiochem. 2010. PMID: 20540059 Free PMC article. - Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge.
Martins J, Vasconcelos V. Martins J, et al. Mar Drugs. 2015 Nov 13;13(11):6910-46. doi: 10.3390/md13116910. Mar Drugs. 2015. PMID: 26580631 Free PMC article. Review. - Molecular biology of peptide and polyketide biosynthesis in cyanobacteria.
Dittmann E, Neilan BA, Börner T. Dittmann E, et al. Appl Microbiol Biotechnol. 2001 Nov;57(4):467-73. doi: 10.1007/s002530100810. Appl Microbiol Biotechnol. 2001. PMID: 11764765 Review.
Cited by
- Discovery of nostatin A, an azole-containing proteusin with prominent cytostatic and pro-apoptotic activity.
Delawská K, Hájek J, Voráčová K, Kuzma M, Mareš J, Vicková K, Kádek A, Tučková D, Gallob F, Divoká P, Moos M, Opekar S, Koch L, Saurav K, Sedlák D, Novák P, Urajová P, Dean J, Gažák R, Niedermeyer TJH, Kameník Z, Šimek P, Villunger A, Hrouzek P. Delawská K, et al. Org Biomol Chem. 2024 Nov 22. doi: 10.1039/d4ob01395f. Online ahead of print. Org Biomol Chem. 2024. PMID: 39576263 Free PMC article. - Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Niu W, Guo J. Niu W, et al. Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29. Chem Rev. 2024. PMID: 39207844 Review. - Genome Mining of Pseudanabaena galeata CCNP1313 Indicates a New Scope in the Search for Antiproliferative and Antiviral Agents.
Grabski M, Gawor J, Cegłowska M, Gromadka R, Mazur-Marzec H, Węgrzyn G. Grabski M, et al. Microorganisms. 2024 Aug 9;12(8):1628. doi: 10.3390/microorganisms12081628. Microorganisms. 2024. PMID: 39203471 Free PMC article. - Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients.
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. Medeiros W, et al. Microbiol Spectr. 2024 Jun 4;12(6):e0024424. doi: 10.1128/spectrum.00244-24. Epub 2024 May 15. Microbiol Spectr. 2024. PMID: 38747631 Free PMC article. - Bioactive Molecules from the Innate Immunity of Ascidians and Innovative Methods of Drug Discovery: A Computational Approach Based on Artificial Intelligence.
La Paglia L, Vazzana M, Mauro M, Urso A, Arizza V, Vizzini A. La Paglia L, et al. Mar Drugs. 2023 Dec 20;22(1):6. doi: 10.3390/md22010006. Mar Drugs. 2023. PMID: 38276644 Free PMC article. Review.
References
- Admi V, Afek U, Carmeli S. Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi. J Nat Prod. 1996;59:396–399. doi: 10.1021/np960115+. - DOI
- Arrault A, Witczak-Legrand A, Gonzalez P, Bontemps-Subielos N, Banaigs B. Structure and total synthesis of cyclodidemnamide B, a cycloheptapeptide from the ascidian Didemnum molle. Tetrahedron Lett. 2002;43:4041–4044. doi: 10.1016/S0040-4039(02)00693-7. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources