Nitrite-driven anaerobic methane oxidation by oxygenic bacteria - PubMed (original) (raw)
. 2010 Mar 25;464(7288):543-8.
doi: 10.1038/nature08883.
Margaret K Butler, Denis Le Paslier, Eric Pelletier, Sophie Mangenot, Marcel M M Kuypers, Frank Schreiber, Bas E Dutilh, Johannes Zedelius, Dirk de Beer, Jolein Gloerich, Hans J C T Wessels, Theo van Alen, Francisca Luesken, Ming L Wu, Katinka T van de Pas-Schoonen, Huub J M Op den Camp, Eva M Janssen-Megens, Kees-Jan Francoijs, Henk Stunnenberg, Jean Weissenbach, Mike S M Jetten, Marc Strous
Affiliations
- PMID: 20336137
- DOI: 10.1038/nature08883
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
Katharina F Ettwig et al. Nature. 2010.
Abstract
Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
Comment in
- Biogeochemistry: NO connection with methane.
Oremland RS. Oremland RS. Nature. 2010 Mar 25;464(7288):500-1. doi: 10.1038/464500a. Nature. 2010. PMID: 20336129 No abstract available.
Similar articles
- Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph 'Candidatus Methylomirabilis oxyfera'.
Wu ML, van Alen TA, van Donselaar EG, Strous M, Jetten MS, van Niftrik L. Wu ML, et al. FEMS Microbiol Lett. 2012 Sep;334(1):49-56. doi: 10.1111/j.1574-6968.2012.02615.x. FEMS Microbiol Lett. 2012. PMID: 22681179 - A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.
Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L. Wu ML, et al. Biochem Soc Trans. 2011 Jan;39(1):243-8. doi: 10.1042/BST0390243. Biochem Soc Trans. 2011. PMID: 21265781 Review. - Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis.
Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS. Luesken FA, et al. Environ Microbiol. 2012 Apr;14(4):1024-34. doi: 10.1111/j.1462-2920.2011.02682.x. Epub 2012 Jan 6. Environ Microbiol. 2012. PMID: 22221911 - [Research progress on microbial properties of nitrite-dependent anaerobic methane-oxidising bacteria].
Shen LD. Shen LD. Huan Jing Ke Xue. 2015 Mar;36(3):1133-40. Huan Jing Ke Xue. 2015. PMID: 25929086 Review. Chinese. - Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties.
Shen LD, He ZF, Wu HS, Gao ZQ. Shen LD, et al. Curr Microbiol. 2015 Apr;70(4):562-70. doi: 10.1007/s00284-014-0762-x. Epub 2014 Dec 18. Curr Microbiol. 2015. PMID: 25519694 Review.
Cited by
- Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments.
Gomaa F, Utter DR, Powers C, Beaudoin DJ, Edgcomb VP, Filipsson HL, Hansel CM, Wankel SD, Zhang Y, Bernhard JM. Gomaa F, et al. Sci Adv. 2021 May 26;7(22):eabf1586. doi: 10.1126/sciadv.abf1586. Print 2021 May. Sci Adv. 2021. PMID: 34039603 Free PMC article. - Bacterial responses to a simulated colon tumor microenvironment.
Boleij A, Dutilh BE, Kortman GA, Roelofs R, Laarakkers CM, Engelke UF, Tjalsma H. Boleij A, et al. Mol Cell Proteomics. 2012 Oct;11(10):851-62. doi: 10.1074/mcp.M112.019315. Epub 2012 Jun 19. Mol Cell Proteomics. 2012. PMID: 22713208 Free PMC article. - Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria.
Harhangi HR, Le Roy M, van Alen T, Hu BL, Groen J, Kartal B, Tringe SG, Quan ZX, Jetten MS, Op den Camp HJ. Harhangi HR, et al. Appl Environ Microbiol. 2012 Feb;78(3):752-8. doi: 10.1128/AEM.07113-11. Epub 2011 Dec 2. Appl Environ Microbiol. 2012. PMID: 22138989 Free PMC article. - Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis.
Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA. Zakaria NN, et al. Microorganisms. 2021 Feb 17;9(2):419. doi: 10.3390/microorganisms9020419. Microorganisms. 2021. PMID: 33671443 Free PMC article. Review. - Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea.
Chistoserdova L. Chistoserdova L. Front Microbiol. 2016 Sep 13;7:1425. doi: 10.3389/fmicb.2016.01425. eCollection 2016. Front Microbiol. 2016. PMID: 27679616 Free PMC article. No abstract available.
References
- J Inorg Biochem. 2005 Jan;99(1):194-215 - PubMed
- FEMS Microbiol Rev. 2009 Jan;33(1):109-32 - PubMed
- Nature. 2003 Dec 18;426(6968):878-81 - PubMed
- Genome Res. 1998 Mar;8(3):195-202 - PubMed
- J Geophys Res. 2000 May 25;105(E5):11981-90 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases