Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants - PubMed (original) (raw)
. 2010 Sep;24(9):3196-209.
doi: 10.1096/fj.09-151084. Epub 2010 Apr 15.
Affiliations
- PMID: 20395457
- DOI: 10.1096/fj.09-151084
Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants
Francesca Fanelli et al. FASEB J. 2010 Sep.
Abstract
Disease-causing missense mutations in membrane proteins, such as rhodopsin mutations associated with the autosomal dominant form of retinitis pigmentosa (ADRP), are often linked to defects in folding and/or trafficking. The mechanical unfolding of wild-type rhodopsin was compared with that of 20 selected ADRP-linked mutants more or less defective in folding and retinal binding. Rhodopsin fold is characterized by networks of amino acids in the retinal and G-protein binding sites likely to play a role in the stability and function of the protein. The distribution of highly connected nodes in the network reflects the existence of a diffuse intramolecular communication inside and between the 2 poles of the helix bundle, which makes pathogenic mutations share similar phenotypes irrespective of topological and physicochemical differences between them. Because of this communication, the ADRP-linked rhodopsin mutations share a more or less marked ability to impair selected hubs in the protein structure network. The extent of this structural effect relates to the severity of the biochemical defect caused by mutation. The investigative strategy employed in this study is likely to apply to all structurally known membrane proteins particularly susceptible to misassembly-causing mutations.
Similar articles
- Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa.
Kaushal S, Khorana HG. Kaushal S, et al. Biochemistry. 1994 May 24;33(20):6121-8. doi: 10.1021/bi00186a011. Biochemistry. 1994. PMID: 8193125 - Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
Liu X, Garriga P, Khorana HG. Liu X, et al. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4554-9. doi: 10.1073/pnas.93.10.4554. Proc Natl Acad Sci U S A. 1996. PMID: 8643442 Free PMC article. - Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis.
Stojanovic A, Hwang I, Khorana HG, Hwa J. Stojanovic A, et al. J Biol Chem. 2003 Oct 3;278(40):39020-8. doi: 10.1074/jbc.M303625200. Epub 2003 Jul 18. J Biol Chem. 2003. PMID: 12871954 - Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.
Mendes HF, van der Spuy J, Chapple JP, Cheetham ME. Mendes HF, et al. Trends Mol Med. 2005 Apr;11(4):177-85. doi: 10.1016/j.molmed.2005.02.007. Trends Mol Med. 2005. PMID: 15823756 Review. - Structural aspects of rod opsin and their implication in genetic diseases.
Fanelli F, Felline A, Marigo V. Fanelli F, et al. Pflugers Arch. 2021 Sep;473(9):1339-1359. doi: 10.1007/s00424-021-02546-x. Epub 2021 Mar 16. Pflugers Arch. 2021. PMID: 33728518 Review.
Cited by
- Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa.
Ortega JT, Jastrzebska B. Ortega JT, et al. Adv Exp Med Biol. 2022;1371:61-77. doi: 10.1007/5584_2021_682. Adv Exp Med Biol. 2022. PMID: 34962636 Review. - Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice.
Ortega JT, Parmar T, Carmena-Bargueño M, Pérez-Sánchez H, Jastrzebska B. Ortega JT, et al. J Neurosci Res. 2022 Apr;100(4):1063-1083. doi: 10.1002/jnr.25021. Epub 2022 Feb 15. J Neurosci Res. 2022. PMID: 35165923 Free PMC article. - Molecular dynamics simulations of hsp90 with an eye to inhibitor design.
Moroni E, Morra G, Colombo G. Moroni E, et al. Pharmaceuticals (Basel). 2012 Sep 10;5(9):944-62. doi: 10.3390/ph5090944. Pharmaceuticals (Basel). 2012. PMID: 24280699 Free PMC article. - Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics.
Pandini A, Fornili A, Fraternali F, Kleinjung J. Pandini A, et al. FASEB J. 2012 Feb;26(2):868-81. doi: 10.1096/fj.11-190868. Epub 2011 Nov 9. FASEB J. 2012. PMID: 22071506 Free PMC article. - Action of molecular switches in GPCRs--theoretical and experimental studies.
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Trzaskowski B, et al. Curr Med Chem. 2012;19(8):1090-109. doi: 10.2174/092986712799320556. Curr Med Chem. 2012. PMID: 22300046 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials