Plant volatiles influence electrophysiological and behavioral responses of Lygus hesperus - PubMed (original) (raw)
Plant volatiles influence electrophysiological and behavioral responses of Lygus hesperus
Livy Williams 3rd et al. J Chem Ecol. 2010 May.
Abstract
Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-beta-ocimene, (E,E)-alpha-farnesene, (+/-)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (beta-myrcene, beta-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(-)-alpha-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (+/-)-linalool, (E,E)-alpha-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-alpha-pinene, (E)-beta-ocimene, and (E,E)-alpha-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(-)-alpha-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.
Similar articles
- Behavioral response of Lygus hesperus to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer.
Blackmer JL, Rodriguez-Saona C, Byers JA, Shope KL, Smith JP. Blackmer JL, et al. J Chem Ecol. 2004 Aug;30(8):1547-64. doi: 10.1023/b:joec.0000042067.27698.30. J Chem Ecol. 2004. PMID: 15537158 - EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid.
Williams L 3rd, Rodriguez-Saona C, Castle SC, Zhu S. Williams L 3rd, et al. J Chem Ecol. 2008 Sep;34(9):1190-201. doi: 10.1007/s10886-008-9520-5. Epub 2008 Jul 24. J Chem Ecol. 2008. PMID: 18651192 - Electrophysiological and Behavioral Responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to Plant Volatiles.
Xu X, Cai X, Bian L, Luo Z, Xin Z, Chen Z. Xu X, et al. Environ Entomol. 2015 Oct;44(5):1425-33. doi: 10.1093/ee/nvv106. Epub 2015 Jul 12. Environ Entomol. 2015. PMID: 26314008 - Electrophysiological and Behavioral Responses of Batocera horsfieldi Hope to Volatiles from Pistacia chinensis Bunge.
Fan J, Zheng K, Xie P, Dong Y, Gu Y, Wickham JD. Fan J, et al. Insects. 2023 Nov 27;14(12):911. doi: 10.3390/insects14120911. Insects. 2023. PMID: 38132585 Free PMC article. - Identification and Synthesis of Leptotriene, a Unique Sesquiterpene Hydrocarbon from Males of the Leaffooted Bugs Leptoglossus zonatus and L. occidentalis.
Millar JG, Zou Y, Hall DR, Halloran S, Pajares JA, Ponce-Herrero L, Shates T, Wilson H, Daane KM. Millar JG, et al. J Nat Prod. 2022 Aug 26;85(8):2062-2070. doi: 10.1021/acs.jnatprod.2c00470. Epub 2022 Jul 25. J Nat Prod. 2022. PMID: 35877168 Review.
Cited by
- Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds.
Niu D, Xu L, Lin K. Niu D, et al. Insects. 2024 Jul 28;15(8):572. doi: 10.3390/insects15080572. Insects. 2024. PMID: 39194777 Free PMC article. Review. - Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
Pullmann-Lindsley H, Huff RM, Boyi J, Pitts RJ. Pullmann-Lindsley H, et al. PLoS One. 2024 May 6;19(5):e0302496. doi: 10.1371/journal.pone.0302496. eCollection 2024. PLoS One. 2024. PMID: 38709760 Free PMC article. - Identification and characterization of two P450 enzymes from Citrus sinensis involved in TMTT and DMNT biosyntheses and Asian citrus psyllid defense.
Sun X, Hu C, Yi G, Zhang X. Sun X, et al. Hortic Res. 2024 Apr 1;11(4):uhae037. doi: 10.1093/hr/uhae037. eCollection 2024 Apr. Hortic Res. 2024. PMID: 38617747 Free PMC article. - Electrophysiological and Behavioral Responses of Apis mellifera and Bombus terrestris to Melon Flower Volatiles.
Zhang J, Liu J, Gao F, Chen M, Jiang Y, Zhao H, Ma W. Zhang J, et al. Insects. 2022 Oct 22;13(11):973. doi: 10.3390/insects13110973. Insects. 2022. PMID: 36354797 Free PMC article. - Plant volatile organic compounds attractive to Lygus pratensis.
Feng H, Gou C, Aimaiti D, Sun P, Wang L, Hao H. Feng H, et al. Open Life Sci. 2022 Apr 11;17(1):362-371. doi: 10.1515/biol-2022-0038. eCollection 2022. Open Life Sci. 2022. PMID: 35586846 Free PMC article.
References
- J Chem Ecol. 2004 Aug;30(8):1509-29 - PubMed
- J Chem Ecol. 2001 Oct;27(10):2013-28 - PubMed
- J Comp Physiol A. 2001 Sep;187(7):509-19 - PubMed
- J Chem Ecol. 2002 Sep;28(9):1733-47 - PubMed
- J Chem Ecol. 2003 Dec;29(12):2735-48 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources