Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts - PubMed (original) (raw)
Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts
Martin Holm Rau et al. Environ Microbiol. 2010 Jun.
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria. A combination of global gene expression analysis and phenotypic characterization of longitudinal isolates from cystic fibrosis patients revealed well-known characteristics such as conversion to a mucoid phenotype by mucA mutation and increased antibiotic resistance by nfxB mutation. Additionally, upregulation of the atu operon leading to enhanced growth on leucine provides a possible example of metabolic optimization. A detailed investigation of the mucoid phenotype uncovered profound pleiotropic effects on gene expression including reduction of virulence factors and the Rhl quorum sensing system. Accordingly, mucoid isolates displayed a general reduction of virulence in the Caenorhabditis elegans infection model, altogether suggesting that the adaptive success of the mucoid variant extends beyond the benefits of alginate overproduction. In the overall perspective the global phenotype of the adapted variants appears to place them on paths in direction of fully adapted strains residing in long-term chronically infected patients.
Similar articles
- Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients.
Lee B, Schjerling CK, Kirkby N, Hoffmann N, Borup R, Molin S, Høiby N, Ciofu O. Lee B, et al. APMIS. 2011 Apr;119(4-5):263-74. doi: 10.1111/j.1600-0463.2011.02726.x. Epub 2011 Feb 24. APMIS. 2011. PMID: 21492226 - Different mutations in mucA gene of Pseudomonas aeruginosa mucoid strains in cystic fibrosis patients and their effect on algU gene expression.
Pulcrano G, Iula DV, Raia V, Rossano F, Catania MR. Pulcrano G, et al. New Microbiol. 2012 Jul;35(3):295-305. Epub 2012 Jun 30. New Microbiol. 2012. PMID: 22842599 - Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung.
Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JIA, Jensen P, Johnsen AH, Givskov M, Ohman DE, Søren M, Høiby N, Kharazmi A. Mathee K, et al. Microbiology (Reading). 1999 Jun;145 ( Pt 6):1349-1357. doi: 10.1099/13500872-145-6-1349. Microbiology (Reading). 1999. PMID: 10411261 - Alginate production by the mucoid Pseudomonas aeruginosa associated with cystic fibrosis.
Gill JF, Deretic V, Chakrabarty AM. Gill JF, et al. Microbiol Sci. 1987 Oct;4(10):296-9. Microbiol Sci. 1987. PMID: 3155272 Review. - Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis.
Pedersen SS. Pedersen SS. APMIS Suppl. 1992;28:1-79. APMIS Suppl. 1992. PMID: 1449848 Review.
Cited by
- Microbiology of cystic fibrosis persons not chronically infected with P. aeruginosa: A quasi-experimental study on two different upper airways' sampling methods.
Dolce D, Ravenni N, Fevola C, Francalanci M, Bonomi P, Cavicchi MC, Galici V, Neri AS, Taccetti G, Terlizzi V, Innocenti D, Ferrari B, Bianchimani C, Camera E, Orioli T, Campana S. Dolce D, et al. Heliyon. 2024 Feb 29;10(5):e26978. doi: 10.1016/j.heliyon.2024.e26978. eCollection 2024 Mar 15. Heliyon. 2024. PMID: 38449646 Free PMC article. - Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation.
Little RH, Grenga L, Saalbach G, Howat AM, Pfeilmeier S, Trampari E, Malone JG. Little RH, et al. PLoS Genet. 2016 Feb 4;12(2):e1005837. doi: 10.1371/journal.pgen.1005837. eCollection 2016 Feb. PLoS Genet. 2016. PMID: 26845436 Free PMC article. - The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways.
Malone JG, Jaeger T, Manfredi P, Dötsch A, Blanka A, Bos R, Cornelis GR, Häussler S, Jenal U. Malone JG, et al. PLoS Pathog. 2012;8(6):e1002760. doi: 10.1371/journal.ppat.1002760. Epub 2012 Jun 14. PLoS Pathog. 2012. PMID: 22719254 Free PMC article. - Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection.
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Guillaume O, et al. Biofilm. 2022 Oct 22;4:100089. doi: 10.1016/j.bioflm.2022.100089. eCollection 2022 Dec. Biofilm. 2022. PMID: 36324525 Free PMC article. Review. - Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection.
Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP, Buskirk SW, Bruger EL, Waters CM, Cooper VS, Moreira LM. Silva IN, et al. mSystems. 2016 May 24;1(3):e00029-16. doi: 10.1128/mSystems.00029-16. eCollection 2016 May-Jun. mSystems. 2016. PMID: 27822534 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical