Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches - PubMed (original) (raw)
Review
. 2010 Apr 15;19(R1):R103-10.
doi: 10.1093/hmg/ddq165. Epub 2010 Apr 22.
Affiliations
- PMID: 20413654
- DOI: 10.1093/hmg/ddq165
Review
Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches
Stéphane Schmucker et al. Hum Mol Genet. 2010.
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The physiopathological consequences of frataxin deficiency are a severe disruption of iron-sulfur cluster biosynthesis, mitochondrial iron overload coupled to cellular iron dysregulation and an increased sensitivity to oxidative stress. Frataxin is a highly conserved protein, which has been suggested to participate in a variety of different roles associated with cellular iron homeostasis. The present review discusses recent advances that have made crucial contributions in understanding the molecular mechanisms underlying FRDA and in advancements toward potential novel therapeutic approaches. Owing to space constraints, this review will focus on the most commonly accepted and solid molecular and biochemical studies concerning the function of frataxin and the physiopathology of the disease. We invite the reader to read the following reviews to have a more exhaustive overview of the field [Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol., 256 (Suppl. 1), 9-17; Gottesfeld, J.M. (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol. Ther., 116, 236-248; Pandolfo, M. (2008) Drug insight: antioxidant therapy in inherited ataxias. Nat. Clin. Pract. Neurol., 4, 86-96; Puccio, H. (2009) Multicellular models of Friedreich ataxia. J. Neurol., 256 (Suppl. 1), 18-24].
Similar articles
- Friedreich's ataxia: clinical aspects and pathogenesis.
Pandolfo M. Pandolfo M. Semin Neurol. 1999;19(3):311-21. doi: 10.1055/s-2008-1040847. Semin Neurol. 1999. PMID: 12194387 Review. - Friedreich's ataxia: past, present and future.
Marmolino D. Marmolino D. Brain Res Rev. 2011 Jun 24;67(1-2):311-30. doi: 10.1016/j.brainresrev.2011.04.001. Epub 2011 Apr 17. Brain Res Rev. 2011. PMID: 21550666 Review. - Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA. Calabrese V, et al. J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012. J Neurol Sci. 2005. PMID: 15896810 Review. - Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM. Auchère F, et al. Hum Mol Genet. 2008 Sep 15;17(18):2790-802. doi: 10.1093/hmg/ddn178. Epub 2008 Jun 18. Hum Mol Genet. 2008. PMID: 18562474 - Friedreich's ataxia: coenzyme Q10 and vitamin E therapy.
Cooper JM, Schapira AH. Cooper JM, et al. Mitochondrion. 2007 Jun;7 Suppl:S127-35. doi: 10.1016/j.mito.2007.04.001. Epub 2007 Apr 7. Mitochondrion. 2007. PMID: 17485244 Review.
Cited by
- His86 from the N-terminus of frataxin coordinates iron and is required for Fe-S cluster synthesis.
Gentry LE, Thacker MA, Doughty R, Timkovich R, Busenlehner LS. Gentry LE, et al. Biochemistry. 2013 Sep 3;52(35):6085-96. doi: 10.1021/bi400443n. Epub 2013 Aug 19. Biochemistry. 2013. PMID: 23909240 Free PMC article. - Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.
Nachbauer W, Boesch S, Schneider R, Eigentler A, Wanschitz J, Poewe W, Schocke M. Nachbauer W, et al. PLoS One. 2013 Jul 29;8(7):e69229. doi: 10.1371/journal.pone.0069229. Print 2013. PLoS One. 2013. PMID: 23922695 Free PMC article. Clinical Trial. - Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia.
Anzovino A, Lane DJ, Huang ML, Richardson DR. Anzovino A, et al. Br J Pharmacol. 2014 Apr;171(8):2174-90. doi: 10.1111/bph.12470. Br J Pharmacol. 2014. PMID: 24138602 Free PMC article. Review. - Oxidative stress and microRNAs in vascular diseases.
Magenta A, Greco S, Gaetano C, Martelli F. Magenta A, et al. Int J Mol Sci. 2013 Aug 22;14(9):17319-46. doi: 10.3390/ijms140917319. Int J Mol Sci. 2013. PMID: 23975169 Free PMC article. Review. - C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD?
Braems E, Swinnen B, Van Den Bosch L. Braems E, et al. Acta Neuropathol. 2020 Nov;140(5):625-643. doi: 10.1007/s00401-020-02214-x. Epub 2020 Sep 2. Acta Neuropathol. 2020. PMID: 32876811 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical