A comparison of bacterial composition in diabetic ulcers and contralateral intact skin - PubMed (original) (raw)

A comparison of bacterial composition in diabetic ulcers and contralateral intact skin

Viktoria Gontcharova et al. Open Microbiol J. 2010.

Abstract

An extensive portion of the healthcare budget is allocated to chronic human infection. Chronic wounds in particular are a major contributor to this financial burden. Little is known about the types of bacteria which may contribute to the chronicity, biofilm and overall bioburden of the wound itself. In this study we compare the bacteriology of wounds and associated intact skin. Wound and paired intact skin swabs (from a contralateral location) were collected. The bacterial diversity was determined using bacterial Tag-encoded FLX amplicon pyrosequencing (bTEFAP). Diversity analysis showed intact skin to be significantly more diverse than wounds on both the species and genus levels (3% and 5% divergence). Furthermore, wounds show heightened levels of anaerobic bacteria, like Peptoniphilus, Finegoldia, and Anaerococcus, and other detrimental genera such as Corynebacterium and Staphylococcus. Although some of these and other bacterial genera were found to be common between intact skin and wounds, notable opportunistic wound pathogens were found at lower levels in intact skin. Principal Component Analysis demonstrated a clear separability of the two groups. The findings of the study not only greatly support the hypothesis of differing bacterial composition of intact skin and wounds, but also contribute additional insight into the ecology of skin and wound microflora. The increased diversity and lowered levels of opportunistic pathogens found in skin make the system highly distinguishable from wounds.

Keywords: Biofilm; bTEFAP; bacteria; chronic wounds; diversity; microbiome.; pyrosequencing; skin.

PubMed Disclaimer

Figures

Fig. (1)

Fig. (1)

PCA for intact skin and wound data. The figure display the three main principal components to which the data was reduced to. The axes represent the values for principal components 1, 2 and 3. Points lying in the negative portion of an axis indicate a negative correlation between the principal component and the sample. The two groups are denoted by different colors to demonstrate the separation between classes (intact skin vs. wounds). The ability to linearly separate the classes within the PCA figures indicates intact skin samples are different from wound samples.

Fig. (2)

Fig. (2)

Hierarchical clustering of healthy skin and wound data. This figure provides further support for the separability between the two classes of samples, healthy skin and wounds. The figure also indicates low correlation between healthy skin and wound samples for the same individual, indicating lack of contamination or other factors possibly affecting bacterial similarity.

Fig. (3)

Fig. (3)

Correlation Distances for paired intact skin against wound samples. Pearson Correlation distances, ranging from 0 to 2 were normalized to a scale of 0 to 1 where 1 represents the furthest distance, or the least similar samples.

Fig. (4)

Fig. (4)

Correlation Distances for all against all samples. Pearson Correlation distances, ranging from 0 to 2 were normalized to a scale of 0 to 1 where 1 represents the furthest distance, or the least similar samples.

Similar articles

Cited by

References

    1. Bjarnsholt T, Kirketerp-Moller K, Jensen PO, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 2008;16:2–10. - PubMed
    1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45. - PubMed
    1. Wolcott RD, Rhoads DD. A study of biofilm-based wound management in subjects with critical limb ischaemia. J Wound Care. 2008;17:145-2–154. - PubMed
    1. James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44. - PubMed
    1. Percival SL, Bowler P, Woods EJ. Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen. 2008;16:52–7. - PubMed

LinkOut - more resources