The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts - PubMed (original) (raw)
. 2010 May 15;9(10):1960-71.
doi: 10.4161/cc.9.10.11601. Epub 2010 May 15.
Diana Whitaker-Menezes, Remedios Castello-Cros, Stephanos Pavlides, Richard G Pestell, Alessandro Fatatis, Agnieszka K Witkiewicz, Matthew G Vander Heiden, Gemma Migneco, Barbara Chiavarina, Philippe G Frank, Franco Capozza, Neal Flomenberg, Ubaldo E Martinez-Outschoorn, Federica Sotgia, Michael P Lisanti
Affiliations
- PMID: 20495363
- DOI: 10.4161/cc.9.10.11601
Free article
The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts
Gloria Bonuccelli et al. Cell Cycle. 2010.
Free article
Abstract
We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.
Similar articles
- The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Pavlides S, et al. Cell Cycle. 2009 Dec;8(23):3984-4001. doi: 10.4161/cc.8.23.10238. Epub 2009 Dec 5. Cell Cycle. 2009. PMID: 19923890 - Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Migneco G, et al. Cell Cycle. 2010 Jun 15;9(12):2412-22. doi: 10.4161/cc.9.12.11989. Epub 2010 Jun 15. Cell Cycle. 2010. PMID: 20562527 - Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP. Chiavarina B, et al. Cancer Biol Ther. 2011 Dec 15;12(12):1101-13. doi: 10.4161/cbt.12.12.18703. Epub 2011 Dec 15. Cancer Biol Ther. 2011. PMID: 22236875 Free PMC article. - Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Martinez-Outschoorn U, Sotgia F, Lisanti MP. Martinez-Outschoorn U, et al. Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5. Semin Oncol. 2014. PMID: 24787293 Review. - Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP. Martinez-Outschoorn UE, et al. Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51. doi: 10.1016/j.biocel.2011.01.023. Epub 2011 Feb 15. Int J Biochem Cell Biol. 2011. PMID: 21300172 Free PMC article. Review.
Cited by
- Mitochondria and cancer.
Wallace DC. Wallace DC. Nat Rev Cancer. 2012 Oct;12(10):685-98. doi: 10.1038/nrc3365. Nat Rev Cancer. 2012. PMID: 23001348 Free PMC article. Review. - Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM).
Lane AN, Higashi RM, Fan TW. Lane AN, et al. Metabolomics. 2016 Jul;12(7):118. doi: 10.1007/s11306-016-1065-y. Epub 2016 Jun 29. Metabolomics. 2016. PMID: 27489532 Free PMC article. - Multiple Targets of the Canonical WNT/β-Catenin Signaling in Cancers.
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Lecarpentier Y, et al. Front Oncol. 2019 Nov 18;9:1248. doi: 10.3389/fonc.2019.01248. eCollection 2019. Front Oncol. 2019. PMID: 31803621 Free PMC article. Review. - Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers.
Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP. Witkiewicz AK, et al. Cancer Biol Ther. 2010 Jul 15;10(2):135-43. doi: 10.4161/cbt.10.2.11983. Epub 2010 Jul 7. Cancer Biol Ther. 2010. PMID: 20431349 Free PMC article. - Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored.
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Mikó E, et al. Cells. 2019 Mar 29;8(4):293. doi: 10.3390/cells8040293. Cells. 2019. PMID: 30934972 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
- P30-CA-56036/CA/NCI NIH HHS/United States
- R01-AR-055660/AR/NIAMS NIH HHS/United States
- R01-CA-080250/CA/NCI NIH HHS/United States
- R01-CA-098779/CA/NCI NIH HHS/United States
- R01-CA-107382/CA/NCI NIH HHS/United States
- R01-CA-120876/CA/NCI NIH HHS/United States
- R01-CA-70896/CA/NCI NIH HHS/United States
- R01-CA-75503/CA/NCI NIH HHS/United States
- R01-CA-86072/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous