Average shape standard atlas for the adult Drosophila ventral nerve cord - PubMed (original) (raw)
. 2010 Jul 1;518(13):2437-55.
doi: 10.1002/cne.22346.
Affiliations
- PMID: 20503421
- DOI: 10.1002/cne.22346
Average shape standard atlas for the adult Drosophila ventral nerve cord
Jana Boerner et al. J Comp Neurol. 2010.
Abstract
Neuroanatomy benefits from quantification of neural structures, i.e., neurons, circuits, and brain parts, within a common reference system. Recent improvements in imaging techniques and increased computational power have made the creation of Web-based databases possible, which serve as common platforms for incorporating anatomical data. This study establishes a standard average shape atlas for the ventral nerve cord (VNC) of Drosophila melanogaster. This atlas allows for the registration of morphological, developmental, and genetic data into one quantitative 3D reference system. The standard is based on an average adult Drosophila VNC neuropil as labeled in 24 whole-mount preparations with the commercially available antibody (nc82) recognizing the Drosophila Bruchpilot protein (Brp). For the standardization procedure no expert knowledge of brain anatomy is required and global thresholding as well as straightforward affine and elastic registration procedures minimize user interactions. Successful registration is demonstrated for tracts and commissures, gene expression patterns, and geometric reconstructions of individual neurons. Any structure that is counterstained with anti-Brp can be registered into the standard, allowing for fast comparison of data from different experiments and different laboratories. In addition, standard transformations can be applied to gray scale image data, so that any confocal image stack that is colabeled with anti-Brp can be analyzed within standardized 3D reference coordinates. This allows for the creation of putative neural connectivity maps and the comparison of expression patterns derived from different preparations. The standard and protocols for histological methods, segmentation, and registration procedures will be made available on the Web.
Similar articles
- Three-dimensional average-shape atlas of the honeybee brain and its applications.
Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R. Brandt R, et al. J Comp Neurol. 2005 Nov 7;492(1):1-19. doi: 10.1002/cne.20644. J Comp Neurol. 2005. PMID: 16175557 - BrainAligner: 3D registration atlases of Drosophila brains.
Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW, Simpson JH. Peng H, et al. Nat Methods. 2011 Jun;8(6):493-500. doi: 10.1038/nmeth.1602. Epub 2011 May 1. Nat Methods. 2011. PMID: 21532582 Free PMC article. - Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy.
Hartenstein V, Omoto JJ, Ngo KT, Wong D, Kuert PA, Reichert H, Lovick JK, Younossi-Hartenstein A. Hartenstein V, et al. J Comp Neurol. 2018 Jan 1;526(1):6-32. doi: 10.1002/cne.24287. Epub 2017 Aug 10. J Comp Neurol. 2018. PMID: 28730682 Free PMC article. - Generation and Evolution of Neural Cell Types and Circuits: Insights from the Drosophila Visual System.
Perry M, Konstantinides N, Pinto-Teixeira F, Desplan C. Perry M, et al. Annu Rev Genet. 2017 Nov 27;51:501-527. doi: 10.1146/annurev-genet-120215-035312. Epub 2017 Sep 27. Annu Rev Genet. 2017. PMID: 28961025 Free PMC article. Review. - Whole mouse brain reconstruction and registration to a reference atlas with standard histochemical processing of coronal sections.
Eastwood BS, Hooks BM, Paletzki RF, O'Connor NJ, Glaser JR, Gerfen CR. Eastwood BS, et al. J Comp Neurol. 2019 Sep 1;527(13):2170-2178. doi: 10.1002/cne.24602. Epub 2019 Jan 2. J Comp Neurol. 2019. PMID: 30549030 Free PMC article. Review.
Cited by
- Signaling Pathways Controlling Axonal Wrapping in Drosophila.
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Baldenius M, et al. Cells. 2023 Oct 31;12(21):2553. doi: 10.3390/cells12212553. Cells. 2023. PMID: 37947631 Free PMC article. Review. - An unbiased template of the Drosophila brain and ventral nerve cord.
Bogovic JA, Otsuna H, Heinrich L, Ito M, Jeter J, Meissner G, Nern A, Colonell J, Malkesman O, Ito K, Saalfeld S. Bogovic JA, et al. PLoS One. 2020 Dec 31;15(12):e0236495. doi: 10.1371/journal.pone.0236495. eCollection 2020. PLoS One. 2020. PMID: 33382698 Free PMC article. - A Systematic Nomenclature for the Drosophila Ventral Nerve Cord.
Court R, Namiki S, Armstrong JD, Börner J, Card G, Costa M, Dickinson M, Duch C, Korff W, Mann R, Merritt D, Murphey RK, Seeds AM, Shirangi T, Simpson JH, Truman JW, Tuthill JC, Williams DW, Shepherd D. Court R, et al. Neuron. 2020 Sep 23;107(6):1071-1079.e2. doi: 10.1016/j.neuron.2020.08.005. Epub 2020 Sep 14. Neuron. 2020. PMID: 32931755 Free PMC article. - The development and assembly of the Drosophila adult ventral nerve cord.
Venkatasubramanian L, Mann RS. Venkatasubramanian L, et al. Curr Opin Neurobiol. 2019 Jun;56:135-143. doi: 10.1016/j.conb.2019.01.013. Epub 2019 Feb 28. Curr Opin Neurobiol. 2019. PMID: 30826502 Free PMC article. Review. - The functional organization of descending sensory-motor pathways in Drosophila.
Namiki S, Dickinson MH, Wong AM, Korff W, Card GM. Namiki S, et al. Elife. 2018 Jun 26;7:e34272. doi: 10.7554/eLife.34272. Elife. 2018. PMID: 29943730 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous