Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules - PubMed (original) (raw)
Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules
Sui Huang. PLoS Biol. 2010.
No abstract available
Conflict of interest statement
The author has declared that no competing interests exist.
Figures
Figure 1. Fundamental principles of high-dimensional dynamical systems that may explain the coordinated change of gene expression during cell fate commitment and phenotype change and integrates chance and necessity.
(A) Basic concepts. The “cube” represents a three-dimensional state space (describing a three-gene system (genes A, B, and C) with their expression levels (xA, xB, and xC) as axes. A state S is a point in state space (blue ball). When gene expression pattern changes, the state moves along a trajectory. If gene B, which suppresses gene C, increases its expression xB, then the point S will move in the direction of the axis of increasing xB and at the same time, by necessity, of decreasing xC. (B) Application of state space and cell state concepts to a population of cells represented by a “cloud” of states. The interaction between the genes (state space dimensions) prevents the hypothetical even dispersion into the entire state space, instead allowing cells to occupy only predestined regions (cell type attractors) by following the trajectories (red). The mutual inhibition of xB and xC, for instance, pushes cells away towards an [_xB_≫_xC_] and an [_xB_≪_xC_] attractor. Yellow double arrow indicates the trajectory separation. For details see text. The insets at the bottom represent a histogram as typically observed in flow cytometry, which represents a projection of the state space for X B and the quasi-potential landscape (schematically) along X B. Note that because this is a non-integrable, non-conservative system, the elevation of the landscape does not represent true potential energy. (C) Example of a typical gene regulatory circuit of two mutually inhibiting and self-activating genes B and C (for instance Gata6 and Nanog) that establishes a metastable bipotent state xB_≈_xC that can differentiate into either one of the two committed lineage attractors, [_xB_≫_xC_] and [_xB_≪_xC_].
Comment on
- PLoS Biol. 8:e1000379.
Similar articles
- Developmental analyses of mouse embryos and adults using a non-overlapping tracing system for all three germ layers.
Serizawa T, Isotani A, Matsumura T, Nakanishi K, Nonaka S, Shibata S, Ikawa M, Okano H. Serizawa T, et al. Development. 2019 Nov 4;146(21):dev174938. doi: 10.1242/dev.174938. Development. 2019. PMID: 31597657 - Whsc1 links pluripotency exit with mesendoderm specification.
Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T. Tian TV, et al. Nat Cell Biol. 2019 Jul;21(7):824-834. doi: 10.1038/s41556-019-0342-1. Epub 2019 Jun 24. Nat Cell Biol. 2019. PMID: 31235934 Free PMC article. - Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast.
Acampora D, Omodei D, Petrosino G, Garofalo A, Savarese M, Nigro V, Di Giovannantonio LG, Mercadante V, Simeone A. Acampora D, et al. Cell Rep. 2016 Jun 21;15(12):2651-64. doi: 10.1016/j.celrep.2016.05.041. Epub 2016 Jun 9. Cell Rep. 2016. PMID: 27292645 - Differential response of epiblast stem cells to Nodal and Activin signalling: a paradigm of early endoderm development in the embryo.
Kaufman-Francis K, Goh HN, Kojima Y, Studdert JB, Jones V, Power MD, Wilkie E, Teber E, Loebel DA, Tam PP. Kaufman-Francis K, et al. Philos Trans R Soc Lond B Biol Sci. 2014 Dec 5;369(1657):20130550. doi: 10.1098/rstb.2013.0550. Philos Trans R Soc Lond B Biol Sci. 2014. PMID: 25349457 Free PMC article. Review. - Developmental Competence for Primordial Germ Cell Fate.
Günesdogan U, Surani MA. Günesdogan U, et al. Curr Top Dev Biol. 2016;117:471-96. doi: 10.1016/bs.ctdb.2015.11.007. Epub 2016 Feb 18. Curr Top Dev Biol. 2016. PMID: 26969996 Review.
Cited by
- Metabolic adaptation pilots the differentiation of human hematopoietic cells.
Racine L, Parmentier R, Niphadkar S, Chhun J, Martignoles JA, Delhommeau F, Laxman S, Paldi A. Racine L, et al. Life Sci Alliance. 2024 May 27;7(8):e202402747. doi: 10.26508/lsa.202402747. Print 2024 Aug. Life Sci Alliance. 2024. PMID: 38802246 Free PMC article. - Global genome decompaction leads to stochastic activation of gene expression as a first step toward fate commitment in human hematopoietic cells.
Parmentier R, Racine L, Moussy A, Chantalat S, Sudharshan R, Papili Gao N, Stockholm D, Corre G, Fourel G, Deleuze JF, Gunawan R, Paldi A. Parmentier R, et al. PLoS Biol. 2022 Oct 26;20(10):e3001849. doi: 10.1371/journal.pbio.3001849. eCollection 2022 Oct. PLoS Biol. 2022. PMID: 36288293 Free PMC article. - Novel generic models for differentiating stem cells reveal oscillatory mechanisms.
Farjami S, Camargo Sosa K, Dawes JHP, Kelsh RN, Rocco A. Farjami S, et al. J R Soc Interface. 2021 Oct;18(183):20210442. doi: 10.1098/rsif.2021.0442. Epub 2021 Oct 6. J R Soc Interface. 2021. PMID: 34610261 Free PMC article. - Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities.
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Mehtonen J, et al. Genome Med. 2020 Nov 20;12(1):99. doi: 10.1186/s13073-020-00799-2. Genome Med. 2020. PMID: 33218352 Free PMC article. - Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome.
Arrell DK, Rosenow CS, Yamada S, Behfar A, Terzic A. Arrell DK, et al. NPJ Regen Med. 2020 Mar 12;5:5. doi: 10.1038/s41536-020-0091-6. eCollection 2020. NPJ Regen Med. 2020. PMID: 32194990 Free PMC article.
References
- Rossant J. Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev. 2007;19:111–118. - PubMed
- Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol. 2003;19:1–22. - PubMed
- Strohman R. Epigenesis: the missing beat in biotechnology? Biotechnology (N Y) 1994;12:156–164. - PubMed
- Kaern M, Elston T. C, Blake W. J, Collins J. J. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005;6:451–464. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources