Understanding and overcoming major barriers in cancer nanomedicine - PubMed (original) (raw)
Editorial
Understanding and overcoming major barriers in cancer nanomedicine
Shuming Nie. Nanomedicine (Lond). 2010 Jun.
No abstract available
Figures
Figure 1. Nanoparticle interactions with plasma proteins and blood immune cells
The main modes of interactions include (A) nonspecific protein adsorption on the particle surface (opsonization) and phagocytosis by leukocytes (e.g., monocytes), (B) nonspecific nanoparticle–cell membrane interactions (electrostatic or hydrophobic) and (C) fluid-phase pinocytosis. Adapted with permission from Aaron Mohs, Nie Group, Emory University, GA, USA.
Figure 2. Quantum dots involved in both active and passive tumor targeting
In the passive mode, nanometer-sized particles such as quantum dots accumulate at tumor sites through an enhanced permeability and retention effect. For active tumor targeting, nanoparticles are conjugated to molecular ligands such as antibodies and peptides to recognize protein targets that are overexpressed on the surface of tumor cells such as the EGF receptor, the transferrin receptor or the folate receptor. Adapted with permission from Ximei Qian, Nie Group, Emory University, GA, USA.
Similar articles
- New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy.
Zhou Y, Dai Z. Zhou Y, et al. Chem Asian J. 2018 Nov 16;13(22):3333-3340. doi: 10.1002/asia.201800149. Epub 2018 Mar 30. Chem Asian J. 2018. PMID: 29441706 Review. - Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue.
Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G. Aizik G, et al. Nano Lett. 2019 Sep 11;19(9):5844-5852. doi: 10.1021/acs.nanolett.9b01027. Epub 2019 Aug 22. Nano Lett. 2019. PMID: 31424944 - Competition Between Tumor and Mononuclear Phagocyte System Causing the Low Tumor Distribution of Nanoparticles and Strategies to Improve Tumor Accumulation.
Yang B, Han X, Ji B, Lu R. Yang B, et al. Curr Drug Deliv. 2016;13(8):1261-1274. doi: 10.2174/1567201813666160418105703. Curr Drug Deliv. 2016. PMID: 27086698 Review. - Phagocytosis of colloidal carbon by the reticuloendothelial system during hepatocarcinogenesis in rats.
KAMPSCHMIDT RF, CLABAUGH WA, ARREDONDO MI. KAMPSCHMIDT RF, et al. Proc Soc Exp Biol Med. 1961 Oct;108:216-9. doi: 10.3181/00379727-108-26896. Proc Soc Exp Biol Med. 1961. PMID: 14453505 No abstract available. - Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots.
Riviere JE. Riviere JE. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Jan-Feb;1(1):26-34. doi: 10.1002/wnan.24. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009. PMID: 20049776 Review.
Cited by
- Berberine-styrene-_co_-maleic acid nanomicelles: unlocking opportunities for the treatment and prevention of bacterial infections.
Virzì NF, Greco V, Stracquadanio S, Jasim A, Greish K, Diaz-Rodriguez P, Rotondo NP, Stefani S, Pittalà V, Giuffrida A. Virzì NF, et al. RSC Adv. 2024 Oct 28;14(46):34066-34080. doi: 10.1039/d4ra04457f. eCollection 2024 Oct 23. RSC Adv. 2024. PMID: 39469023 Free PMC article. - Effects of surface functional groups on the formation of nanoparticle-protein corona.
Podila R, Chen R, Ke PC, Brown JM, Rao AM. Podila R, et al. Appl Phys Lett. 2012 Dec 24;101(26):263701. doi: 10.1063/1.4772509. Epub 2012 Dec 26. Appl Phys Lett. 2012. PMID: 23341687 Free PMC article. - Evidences For Charge Transfer-Induced Conformational Changes In Carbon Nanostructure-Protein Corona.
Podila R, Vedantam P, Ke PC, Brown JM, Rao AM. Podila R, et al. J Phys Chem C Nanomater Interfaces. 2012 Oct 18;116(41):22098-22103. doi: 10.1021/jp3085028. Epub 2012 Sep 26. J Phys Chem C Nanomater Interfaces. 2012. PMID: 23243478 Free PMC article. - The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity.
Dadpour S, Mehrabian A, Arabsalmani M, Mirhadi E, Askarizadeh A, Mashreghi M, Jaafari MR. Dadpour S, et al. IET Nanobiotechnol. 2022 Sep;16(7-8):259-272. doi: 10.1049/nbt2.12094. Epub 2022 Aug 18. IET Nanobiotechnol. 2022. PMID: 35983586 Free PMC article. - Drug-targeting methodologies with applications: A review.
Kleinstreuer C, Feng Y, Childress E. Kleinstreuer C, et al. World J Clin Cases. 2014 Dec 16;2(12):742-56. doi: 10.12998/wjcc.v2.i12.742. World J Clin Cases. 2014. PMID: 25516850 Free PMC article. Review.
References
- Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–171. - PubMed
- ▪ Excellent review article describing the promises and challenges in cancer nanotechnology and nanomedicine.
- Nie SM, Xing Y, Kim GJ, et al. Nanotechnology applications in cancer. Ann Rev Biomed Eng. 2007;9:257–288. - PubMed
- ▪ Comprehensive review article summarizing nanotechnology applications in cancer imaging, diagnostics and targeted therapy.
- Sanhai WR, Sakamoto JH, Canady R, et al. Seven challenges for nanomedicine. Nat Nanotechol. 2008;3:242–244. - PubMed
Publication types
MeSH terms
Grants and funding
- R01 CA108468/CA/NCI NIH HHS/United States
- U54CA119338/CA/NCI NIH HHS/United States
- U54 CA119338/CA/NCI NIH HHS/United States
- R01 CA108468-01/CA/NCI NIH HHS/United States
- U54 CA119338-01/CA/NCI NIH HHS/United States
- RC2 CA148265/CA/NCI NIH HHS/United States
- R01CA108468/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources