Viral tricks to grid-lock the type I interferon system - PubMed (original) (raw)
Review
Viral tricks to grid-lock the type I interferon system
Gijs A Versteeg et al. Curr Opin Microbiol. 2010 Aug.
Abstract
Type I interferons (IFNs) play a crucial role in the innate immune avant-garde against viral infections. Virtually all viruses have developed means to counteract the induction, signaling, or antiviral actions of the IFN circuit. Over 170 different virus-encoded IFN antagonists from 93 distinct viruses have been described up to now, indicating that most viruses interfere with multiple stages of the IFN response. Although every viral IFN antagonist is unique in its own right, four main mechanisms are employed to circumvent innate immune responses: (i) general inhibition of cellular gene expression, (ii) sequestration of molecules in the IFN circuit, (iii) proteolytic cleavage, and (iv) proteasomal degradation of key components of the IFN system. The increasing understanding of how different viral IFN antagonists function has been translated to the generation of viruses with mutant IFN antagonists as potential live vaccine candidates. Moreover, IFN antagonists are attractive targets for inhibition by small-molecule compounds.
Copyright 2010 Elsevier Ltd. All rights reserved.
Figures
Figure 1
Viral antagonism with the IFN circuit. A check symbol is displayed at various steps of the IFN cascade (_X_-axis) that are impaired by a particular virus (_Y_-axis). The plot is organized by viral genome type. Double symbols indicate inhibition of IFN induction or signaling at yet unknown step of the pathway. Black symbols indicate proof for viral antagonism of the indicated step in the pathway by recombinant viruses lacking the IFN antagonist. Grey symbols indicate proof by over expression and/or wild-type virus infection.
Figure 2
Schematic representation of type I IFN induction through RLRs and TLRs. Viruses and their antagonistic proteins are indicated at the steps of the IFN pathway they affect. Antagonistic proteins are shown adjacent to their targets in alphabetical order. Antagonists in red indicate proof for IFN antagonist by recombinant viruses lacking the IFN antagonist. Antagonists in blue indicate proof by over expression and/or wild-type virus infection.
Figure 3
Schematic representation of type I IFN signaling. Viruses and their antagonistic proteins are indicated at the steps of the IFN pathway they affect. Antagonistic proteins are shown adjacent to their targets in alphabetical order. Antagonists in red indicate proof for IFN antagonist by recombinant viruses lacking the IFN antagonist. Antagonists in blue indicate proof by over expression and/or wild-type virus infection.
Comment in
- The interaction of viruses with host immune defenses.
Alcami A. Alcami A. Curr Opin Microbiol. 2010 Aug;13(4):501-2. doi: 10.1016/j.mib.2010.07.001. Epub 2010 Jul 23. Curr Opin Microbiol. 2010. PMID: 20650675 No abstract available.
Similar articles
- Decoding type I and III interferon signalling during viral infection.
Mesev EV, LeDesma RA, Ploss A. Mesev EV, et al. Nat Microbiol. 2019 Jun;4(6):914-924. doi: 10.1038/s41564-019-0421-x. Epub 2019 Apr 1. Nat Microbiol. 2019. PMID: 30936491 Free PMC article. Review. - Direct cleavage, proteasomal degradation and sequestration: three mechanisms of viral subversion of type I interferon responses.
McInerney GM, Karlsson Hedestam GB. McInerney GM, et al. J Innate Immun. 2009;1(6):599-606. doi: 10.1159/000235861. Epub 2009 Aug 27. J Innate Immun. 2009. PMID: 20375615 Review. - Early IFN type I response: Learning from microbial evasion strategies.
Coccia EM, Battistini A. Coccia EM, et al. Semin Immunol. 2015 Mar;27(2):85-101. doi: 10.1016/j.smim.2015.03.005. Epub 2015 Apr 11. Semin Immunol. 2015. PMID: 25869307 Free PMC article. Review. - Type I interferons: diversity of sources, production pathways and effects on immune responses.
Swiecki M, Colonna M. Swiecki M, et al. Curr Opin Virol. 2011 Dec;1(6):463-75. doi: 10.1016/j.coviro.2011.10.026. Epub 2011 Nov 25. Curr Opin Virol. 2011. PMID: 22440910 Free PMC article. - Pathogenic viruses: smart manipulators of the interferon system.
Haller O, Weber F. Haller O, et al. Curr Top Microbiol Immunol. 2007;316:315-34. doi: 10.1007/978-3-540-71329-6_15. Curr Top Microbiol Immunol. 2007. PMID: 17969454 Free PMC article. Review.
Cited by
- Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies.
Ning YJ, Feng K, Min YQ, Cao WC, Wang M, Deng F, Hu Z, Wang H. Ning YJ, et al. J Virol. 2015 Apr;89(8):4227-36. doi: 10.1128/JVI.00154-15. Epub 2015 Jan 28. J Virol. 2015. PMID: 25631085 Free PMC article. - Identification of amino acid residues important for anti-IFN activity of porcine reproductive and respiratory syndrome virus non-structural protein 1.
Beura LK, Subramaniam S, Vu HL, Kwon B, Pattnaik AK, Osorio FA. Beura LK, et al. Virology. 2012 Nov 25;433(2):431-9. doi: 10.1016/j.virol.2012.08.034. Epub 2012 Sep 18. Virology. 2012. PMID: 22995188 Free PMC article. - The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria.
Opara NU, Nwagbara UI, Hlongwana KW. Opara NU, et al. Infect Dis Rep. 2022 Nov 21;14(6):932-941. doi: 10.3390/idr14060091. Infect Dis Rep. 2022. PMID: 36412749 Free PMC article. Review. - Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway.
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Sonthonnax F, et al. Sci Rep. 2019 Aug 21;9(1):12171. doi: 10.1038/s41598-019-48507-4. Sci Rep. 2019. PMID: 31434934 Free PMC article. - High-Content Screening and Computational Prediction Reveal Viral Genes That Suppress the Innate Immune Response.
Ng TL, Olson EJ, Yoo TY, Weiss HS, Koide Y, Koch PD, Rollins NJ, Mach P, Meisinger T, Bricken T, Chang TZ, Molloy C, Zürcher J, Chang RL, Mitchison TJ, Glass JI, Marks DS, Way JC, Silver PA. Ng TL, et al. mSystems. 2022 Apr 26;7(2):e0146621. doi: 10.1128/msystems.01466-21. Epub 2022 Mar 23. mSystems. 2022. PMID: 35319251 Free PMC article.
References
- Randall R.E., Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89:1–47. - PubMed
- Stetson D.B., Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006;24:93–103. - PubMed
- Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448:501–505. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- U54 AI057158-010003/AI/NIAID NIH HHS/United States
- U01 AI070469/AI/NIAID NIH HHS/United States
- R01 AI46954/AI/NIAID NIH HHS/United States
- P01AI058113/AI/NIAID NIH HHS/United States
- R01 AI046954/AI/NIAID NIH HHS/United States
- U01 AI070469-05/AI/NIAID NIH HHS/United States
- U01AI070469/AI/NIAID NIH HHS/United States
- U01AI074539/AI/NIAID NIH HHS/United States
- P01 AI048204/AI/NIAID NIH HHS/United States
- P01 AI058113-07/AI/NIAID NIH HHS/United States
- P01 AI082325-015184/AI/NIAID NIH HHS/United States
- HHNSN266200700010C/PHS HHS/United States
- U19 AI062623/AI/NIAID NIH HHS/United States
- R01 AI046954-10/AI/NIAID NIH HHS/United States
- P01AI082325/AI/NIAID NIH HHS/United States
- U54 AI57158/AI/NIAID NIH HHS/United States
- U19 AI083025/AI/NIAID NIH HHS/United States
- U19 AI062623-010003/AI/NIAID NIH HHS/United States
- U19 AI083025-015043/AI/NIAID NIH HHS/United States
- U54 AI057158/AI/NIAID NIH HHS/United States
- U01 AI074539/AI/NIAID NIH HHS/United States
- P01 AI048204-040002/AI/NIAID NIH HHS/United States
- U19AI83025/AI/NIAID NIH HHS/United States
- P01 AI082325/AI/NIAID NIH HHS/United States
- HHSN266200700010C/AI/NIAID NIH HHS/United States
- P01 AI058113/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical