Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure - PubMed (original) (raw)
. 2010 Nov;20(11):1402-9.
doi: 10.1093/glycob/cwq101. Epub 2010 Jun 24.
Affiliations
- PMID: 20581010
- DOI: 10.1093/glycob/cwq101
Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure
Mika Miwa et al. Glycobiology. 2010 Nov.
Abstract
Bifidobacteria are predominant in the intestines of breast-fed infants and offer health benefits to the host. Human milk oligosaccharides (HMOs) are considered to be one of the most important growth factors for intestinal bifidobacteria. HMOs contain two major structures of core tetrasaccharide: lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc; type 1 chain) and lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc; type 2 chain). We previously identified the unique metabolic pathway for lacto-N-tetraose in Bifidobacterium bifidum. Here, we clarified the degradation pathway for lacto-N-neotetraose in the same bifidobacteria. We cloned one β-galactosidase (BbgIII) and two β-N-acetylhexosaminidases (BbhI and BbhII), all of which are extracellular membrane-bound enzymes. The recombinant BbgIII hydrolyzed lacto-N-neotetraose into Gal and lacto-N-triose II, and furthermore the recombinant BbhI, but not BbhII, catalyzed the hydrolysis of lacto-N-triose II to GlcNAc and lactose. Since BbgIII and BbhI were highly specific for lacto-N-neotetraose and lacto-N-triose II, respectively, they may play essential roles in degrading the type 2 oligosaccharides in HMOs.
Similar articles
- Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.
Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H. Yoshida E, et al. Glycobiology. 2012 Mar;22(3):361-8. doi: 10.1093/glycob/cwr116. Epub 2011 Sep 16. Glycobiology. 2012. PMID: 21926104 - Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure.
Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M, Kumagai H, Katayama T, Yamamoto K. Wada J, et al. Appl Environ Microbiol. 2008 Jul;74(13):3996-4004. doi: 10.1128/AEM.00149-08. Epub 2008 May 9. Appl Environ Microbiol. 2008. PMID: 18469123 Free PMC article. - Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates.
Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K. Ashida H, et al. Glycobiology. 2009 Sep;19(9):1010-7. doi: 10.1093/glycob/cwp082. Epub 2009 Jun 11. Glycobiology. 2009. PMID: 19520709 - Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori.
Miyazaki T, Sato T, Furukawa K, Ajisaka K. Miyazaki T, et al. Methods Enzymol. 2010;480:511-24. doi: 10.1016/S0076-6879(10)80023-0. Methods Enzymol. 2010. PMID: 20816225 Review. - Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation.
Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, Kitaoka M, Katayama T. Sakanaka M, et al. Nutrients. 2019 Dec 26;12(1):71. doi: 10.3390/nu12010071. Nutrients. 2019. PMID: 31888048 Free PMC article. Review.
Cited by
- Determining the metabolic fate of human milk oligosaccharides: it may just be more complex than you think?
Jackson PPJ, Wijeyesekera A, Rastall RA. Jackson PPJ, et al. Gut Microbiome (Camb). 2022 Sep 7;3:e9. doi: 10.1017/gmb.2022.8. eCollection 2022. Gut Microbiome (Camb). 2022. PMID: 39295778 Free PMC article. Review. - Crystal Structure of Bifidobacterium bifidum Glycoside Hydrolase Family 110 α-Galactosidase Specific for Blood Group B Antigen.
Kashima T, Akama M, Wakinaka T, Arakawa T, Ashida H, Fushinobu S. Kashima T, et al. J Appl Glycosci (1999). 2024 Aug 20;71(3):81-90. doi: 10.5458/jag.jag.JAG-2024_0005. eCollection 2024. J Appl Glycosci (1999). 2024. PMID: 39234034 Free PMC article. - Disruption of intestinal oxygen balance in acute colitis alters the gut microbiome.
Zong W, Friedman ES, Allu SR, Firrman J, Tu V, Daniel SG, Bittinger K, Liu L, Vinogradov SA, Wu GD. Zong W, et al. Gut Microbes. 2024 Jan-Dec;16(1):2361493. doi: 10.1080/19490976.2024.2361493. Epub 2024 Jul 3. Gut Microbes. 2024. PMID: 38958039 Free PMC article. - Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria.
Hermes GDA, Rasmussen C, Wellejus A. Hermes GDA, et al. Nutrients. 2024 Jun 15;16(12):1893. doi: 10.3390/nu16121893. Nutrients. 2024. PMID: 38931248 Free PMC article. - Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria.
Kiely LJ, Busca K, Lane JA, van Sinderen D, Hickey RM. Kiely LJ, et al. FEMS Microbiol Rev. 2023 Nov 1;47(6):fuad056. doi: 10.1093/femsre/fuad056. FEMS Microbiol Rev. 2023. PMID: 37793834 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials