Inhibitory effect of intracellular lipid load on macroautophagy - PubMed (original) (raw)
Inhibitory effect of intracellular lipid load on macroautophagy
Hiroshi Koga et al. Autophagy. 2010 Aug.
Abstract
Degradation of intracellular components via macroautophagy is a complex multistep process that starts with the sequestration of cytosolic cargo in a de novo formed double-membrane vesicle or autophagosome. This compartment acquires the hydrolases required for cargo digestion by fusion with lysosomes. In contrast to the detailed molecular dissection of the components that participate in the induction, regulation and execution of the early steps in macroautophagy through the engulfment of cargo in autophagosomes, the mechanisms involved in the lysosomal clearance of autophagosomes have been poorly characterized in mammals. One of the major limitations in this respect has been the fact that autophagosome-lysosome fusion in intact cells involves several independent steps, namely binding of the molecular motors associated with the surface of the vesicles with the cytoskeletal network, directional vesicular trafficking and fusion between the two vesicular compartments. Furthermore, both lysosomes and autophagosomes are very dynamic organelles that can fuse with different vesicular structures involved in macroautophagy, but also along the endocytic and phagocytic pathways. To resolve these limitations and directly analyze the fusion step between autophagosomes and different compartments of the endocytic-lysosomal pathway, we have recently developed an in vitro fusion assay with autophagosomes, lysosomes and endosomes isolated from cells or tissues. Fluorescent labeling of these compartments allows for the tracking of fusion events by fluorescence microscopy or by fluorescence-activated cell sorting (FACS). Labeling of either membrane proteins on the surface of the organelles or dye-loading of the vesicles permits the monitoring of hemi-membrane fusion and complete vesicular fusion (cargo mixing).
Similar articles
- PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins.
McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, Kirchof A, Gatti E, Helfrich MH, Wakatsuki S, Behrends C, Pierre P, Dikic I. McEwan DG, et al. Mol Cell. 2015 Jan 8;57(1):39-54. doi: 10.1016/j.molcel.2014.11.006. Epub 2014 Dec 11. Mol Cell. 2015. PMID: 25498145 - Coordination of Autophagosome-Lysosome Fusion by Atg8 Family Members.
Kriegenburg F, Ungermann C, Reggiori F. Kriegenburg F, et al. Curr Biol. 2018 Apr 23;28(8):R512-R518. doi: 10.1016/j.cub.2018.02.034. Curr Biol. 2018. PMID: 29689234 Review. - Membrane Trafficking in Autophagy.
Søreng K, Neufeld TP, Simonsen A. Søreng K, et al. Int Rev Cell Mol Biol. 2018;336:1-92. doi: 10.1016/bs.ircmb.2017.07.001. Epub 2017 Sep 21. Int Rev Cell Mol Biol. 2018. PMID: 29413888 Review. - The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes.
Jahreiss L, Menzies FM, Rubinsztein DC. Jahreiss L, et al. Traffic. 2008 Apr;9(4):574-87. doi: 10.1111/j.1600-0854.2008.00701.x. Epub 2008 Jan 7. Traffic. 2008. PMID: 18182013 Free PMC article. - Thapsigargin distinguishes membrane fusion in the late stages of endocytosis and autophagy.
Ganley IG, Wong PM, Jiang X. Ganley IG, et al. Autophagy. 2011 Nov;7(11):1397-9. doi: 10.4161/auto.7.11.17651. Epub 2011 Nov 1. Autophagy. 2011. PMID: 21921693
Cited by
- Autophagy and Lipid Droplets in the Liver.
Martinez-Lopez N, Singh R. Martinez-Lopez N, et al. Annu Rev Nutr. 2015;35:215-37. doi: 10.1146/annurev-nutr-071813-105336. Epub 2015 May 6. Annu Rev Nutr. 2015. PMID: 26076903 Free PMC article. Review. - Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease.
Zeng J, Acin-Perez R, Assali EA, Martin A, Brownstein AJ, Petcherski A, Fernández-Del-Rio L, Xiao R, Lo CH, Shum M, Liesa M, Han X, Shirihai OS, Grinstaff MW. Zeng J, et al. Nat Commun. 2023 May 4;14(1):2573. doi: 10.1038/s41467-023-38165-6. Nat Commun. 2023. PMID: 37142604 Free PMC article. - Inhibition of soluble epoxide hydrolase attenuates a high-fat diet-mediated renal injury by activating PAX2 and AMPK.
Luo Y, Wu MY, Deng BQ, Huang J, Hwang SH, Li MY, Zhou CY, Zhang QY, Yu HB, Zhao DK, Zhang G, Qin L, Peng A, Hammock BD, Liu JY. Luo Y, et al. Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5154-5159. doi: 10.1073/pnas.1815746116. Epub 2019 Feb 25. Proc Natl Acad Sci U S A. 2019. PMID: 30804206 Free PMC article. - Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis.
Overi D, Carpino G, Franchitto A, Onori P, Gaudio E. Overi D, et al. Cells. 2020 Mar 2;9(3):590. doi: 10.3390/cells9030590. Cells. 2020. PMID: 32131439 Free PMC article. Review. - Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway.
Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, Otsuki Y, Higuchi K. Narabayashi K, et al. J Gastroenterol. 2015 May;50(5):541-54. doi: 10.1007/s00535-014-0995-2. Epub 2014 Sep 12. J Gastroenterol. 2015. PMID: 25212253
MeSH terms
LinkOut - more resources
Full Text Sources