The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-beta1/Smad2 expression - PubMed (original) (raw)
The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-beta1/Smad2 expression
Jian-Gui He et al. Heart Vessels. 2010 Sep.
Abstract
The nonpeptide AVE0991 is expected to be a putative new drug for cardiovascular diseases. However, the mechanisms for the cardioprotective actions of AVE0991 are still not fully understood. We planned to determine whether AVE0991 attenuates the angiotensin II (AngII)-induced myocardial hypertrophy and whether these AVE0991 effects involved transforming growth factor beta1 (TGF-beta1) and Smad2. A rat model of neonatal myocardial hypertrophy was induced by AngII. The AngII group significantly increased in protein content, surface area, and [(3)H]leucine incorporation efficiency by cardiomyocytes, compared to those of the control group (P < 0.01). The AngII group also had elevated TGF-beta1 and Smad2 expression (P < 0.01). These AngII-induced changes were significantly attenuated by AVE0991 in a dose-dependent manner. In our study, these actions of AngII (10(-6) mol/l) were significantly inhibited by both concentrations of AVE0991 (10(-5) mol/l and 10(-7) mol/l). Moreover, the high AVE0991 group had significantly better inhibition of myocardial hypertrophy than the low AVE0991 group. Meanwhile, the beneficial effects of AVE0991 were completely abolished when the cardiomyocytes were pretreated with Ang-(1-7) receptor antagonist A-779 (10(-6) mol/l). These results suggested that AVE0991 prevented AngII-inducing myocardial hypertrophy in a dose-dependent fashion, a process that may be associated with the inhibition of TGF-beta1/Smad2 signaling.
Similar articles
- Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991.
Zeng WT, Chen WY, Leng XY, Tang LL, Sun XT, Li CL, Dai G. Zeng WT, et al. Cardiovasc Ther. 2012 Jun;30(3):152-61. doi: 10.1111/j.1755-5922.2010.00255.x. Epub 2010 Dec 19. Cardiovasc Ther. 2012. PMID: 21167013 - Angiotensin II-induced cardiomyocyte hypertrophy in vitro is TAK1-dependent and Smad2/3-independent.
Watkins SJ, Borthwick GM, Oakenfull R, Robson A, Arthur HM. Watkins SJ, et al. Hypertens Res. 2012 Apr;35(4):393-8. doi: 10.1038/hr.2011.196. Epub 2011 Nov 10. Hypertens Res. 2012. PMID: 22072105 - Angiotensin II upregulates Kv1.5 expression through ROS-dependent transforming growth factor-beta1 and extracellular signal-regulated kinase 1/2 signalings in neonatal rat atrial myocytes.
Lu G, Xu S, Peng L, Huang Z, Wang Y, Gao X. Lu G, et al. Biochem Biophys Res Commun. 2014 Nov 21;454(3):410-6. doi: 10.1016/j.bbrc.2014.10.088. Epub 2014 Oct 24. Biochem Biophys Res Commun. 2014. PMID: 25451261 - Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway.
Ding J, Tang Q, Luo B, Zhang L, Lin L, Han L, Hao M, Li M, Yu L, Li M. Ding J, et al. Eur J Pharmacol. 2019 Sep 15;859:172549. doi: 10.1016/j.ejphar.2019.172549. Epub 2019 Jul 17. Eur J Pharmacol. 2019. PMID: 31325434 - The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle.
Morales MG, Abrigo J, Meneses C, Simon F, Cisternas F, Rivera JC, Vazquez Y, Cabello-Verrugio C. Morales MG, et al. Clin Sci (Lond). 2014 Aug;127(4):251-64. doi: 10.1042/CS20130585. Clin Sci (Lond). 2014. PMID: 24588264
Cited by
- Mas receptor: a potential strategy in the management of ischemic cardiovascular diseases.
Molaei A, Molaei E, Hayes AW, Karimi G. Molaei A, et al. Cell Cycle. 2023 Jul;22(13):1654-1674. doi: 10.1080/15384101.2023.2228089. Epub 2023 Jun 26. Cell Cycle. 2023. PMID: 37365840 Free PMC article. Review. - The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7).
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. Santos RAS, et al. Physiol Rev. 2018 Jan 1;98(1):505-553. doi: 10.1152/physrev.00023.2016. Physiol Rev. 2018. PMID: 29351514 Free PMC article. Review. - Current perspectives in genetic cardiovascular disorders: from basic to clinical aspects.
Kawashiri MA, Hayashi K, Konno T, Fujino N, Ino H, Yamagishi M. Kawashiri MA, et al. Heart Vessels. 2014 Mar;29(2):129-41. doi: 10.1007/s00380-013-0391-5. Epub 2013 Aug 2. Heart Vessels. 2014. PMID: 23907713 Review. - Angiotensin-(1-7): Translational Avenues in Cardiovascular Control.
Medina D, Arnold AC. Medina D, et al. Am J Hypertens. 2019 Nov 15;32(12):1133-1142. doi: 10.1093/ajh/hpz146. Am J Hypertens. 2019. PMID: 31602467 Free PMC article. Review. - Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy.
Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z. Shen H, et al. Stem Cells Int. 2015;2015:524756. doi: 10.1155/2015/524756. Epub 2015 Aug 3. Stem Cells Int. 2015. PMID: 26339251 Free PMC article. Review.
References
- Cardiovasc Res. 2007 May 1;74(2):184-95 - PubMed
- Mol Cell Biol. 1998 Mar;18(3):1225-35 - PubMed
- Regul Pept. 1998 Jun 30;74(2-3):177-84 - PubMed
- Hypertension. 2004 Oct;44(4):490-6 - PubMed
- Cardiovasc Res. 1998 Nov;40(2):352-63 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous