Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome - PubMed (original) (raw)
Comparative Study
doi: 10.1038/ki.2010.262. Epub 2010 Aug 4.
Affiliations
- PMID: 20686450
- DOI: 10.1038/ki.2010.262
Free article
Comparative Study
Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome
Ilse M Rood et al. Kidney Int. 2010 Oct.
Free article
Abstract
Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome.
Similar articles
- Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator.
Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, Star RA. Cheruvanky A, et al. Am J Physiol Renal Physiol. 2007 May;292(5):F1657-61. doi: 10.1152/ajprenal.00434.2006. Epub 2007 Jan 16. Am J Physiol Renal Physiol. 2007. PMID: 17229675 Free PMC article. - Discrimination of urinary exosomes from microvesicles by lipidomics using thin layer liquid chromatography (TLC) coupled with MALDI-TOF mass spectrometry.
Singhto N, Vinaiphat A, Thongboonkerd V. Singhto N, et al. Sci Rep. 2019 Sep 25;9(1):13834. doi: 10.1038/s41598-019-50195-z. Sci Rep. 2019. PMID: 31554842 Free PMC article. Retracted. - Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome.
Wang D, Sun W. Wang D, et al. Proteomics. 2014 Aug;14(16):1922-32. doi: 10.1002/pmic.201300371. Epub 2014 Jul 28. Proteomics. 2014. PMID: 24962155 Review. - Size Separation of Exosomes and Microvesicles Using Flow Field-Flow Fractionation/Multiangle Light Scattering and Lipidomic Comparison.
Kim YB, Lee GB, Moon MH. Kim YB, et al. Anal Chem. 2022 Jun 28;94(25):8958-8965. doi: 10.1021/acs.analchem.2c00806. Epub 2022 Jun 13. Anal Chem. 2022. PMID: 35694825 - Proteomic analysis in pediatric renal disease.
Traum AZ, Schachter AD. Traum AZ, et al. Semin Nephrol. 2007 Nov;27(6):652-7. doi: 10.1016/j.semnephrol.2007.09.009. Semin Nephrol. 2007. PMID: 18061847 Review.
Cited by
- Renal extracellular vesicles: from physiology to clinical application.
Morrison EE, Bailey MA, Dear JW. Morrison EE, et al. J Physiol. 2016 Oct 15;594(20):5735-5748. doi: 10.1113/JP272182. Epub 2016 May 27. J Physiol. 2016. PMID: 27104781 Free PMC article. Review. - Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis.
Correll VL, Otto JJ, Risi CM, Main BP, Boutros PC, Kislinger T, Galkin VE, Nyalwidhe JO, Semmes OJ, Yang L. Correll VL, et al. J Extracell Vesicles. 2022 Feb;11(2):e12184. doi: 10.1002/jev2.12184. J Extracell Vesicles. 2022. PMID: 35119778 Free PMC article. - Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging.
Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, Wang W, Gong H, Lausted C, Hood L, Yang G, Hu Z. Zhu L, et al. Anal Chem. 2014 Sep 2;86(17):8857-64. doi: 10.1021/ac5023056. Epub 2014 Aug 11. Anal Chem. 2014. PMID: 25090139 Free PMC article. - Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers.
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Tomiyama E, et al. Cancer Sci. 2021 May;112(5):2033-2045. doi: 10.1111/cas.14881. Epub 2021 Mar 31. Cancer Sci. 2021. PMID: 33721374 Free PMC article. - Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease.
Viñuela-Berni V, Doníz-Padilla L, Figueroa-Vega N, Portillo-Salazar H, Abud-Mendoza C, Baranda L, González-Amaro R. Viñuela-Berni V, et al. Clin Exp Immunol. 2015 Jun;180(3):442-51. doi: 10.1111/cei.12598. Epub 2015 Apr 27. Clin Exp Immunol. 2015. PMID: 25639560 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources