Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance - PubMed (original) (raw)
. 2010 Dec 9;116(24):5268-79.
doi: 10.1182/blood-2010-06-292300. Epub 2010 Sep 1.
Affiliations
- PMID: 20810926
- DOI: 10.1182/blood-2010-06-292300
Free article
Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance
Priscilla P L Chiu et al. Blood. 2010.
Free article
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is associated with a significant risk of disease relapse, but the biological basis for relapse is poorly understood. Here, we identify leukemiainitiating cells (L-ICs) on the basis of functional assays and prospective isolation and report a role for L-ICs in T-ALL disease and relapse. Long-term proliferation in response to NOTCH1 activating signals in OP9-DL1 coculture system or capacity to initiate leukemia in xenografts by the CD7(+)CD1a(-) subset of primary T-ALL samples was superior to other subsets, refining the identity of T-ALL L-ICs. T-ALL engraftment was improved in nonobese diabetic/severe combined immunodeficiency (NOD/scid)IL2Rγ(null) (NSG) mice compared with NOD/scid with anti-CD122 treatment (NS122), but both showed changes in leukemia immunophenotype. Clonal analysis of xenografts using the TCRG locus revealed the presence of subclones of T-ALL L-ICs, some of which possess a selective growth advantage and correlated with the capacity of CD7(+)CD1a(+) xenograft cells to engraft secondary NSG mice. Treatment of high-risk T-ALL xenografts eliminated CD1a(+) T-ALL cells, but CD1a(-) cells were resistant and their number was increased. Our results establish that primary CD1a(-) T-ALL cells are functionally distinct from CD1a(+) cells and that the CD7(+)CD1a(-) subset is enriched for L-IC activity that may be involved in mediating disease relapse after therapy.
Similar articles
- Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia.
Poglio S, Lewandowski D, Calvo J, Caye A, Gros A, Laharanne E, Leblanc T, Landman-Parker J, Baruchel A, Soulier J, Ballerini P, Clappier E, Pflumio F. Poglio S, et al. Oncotarget. 2016 Jul 5;7(27):41599-41611. doi: 10.18632/oncotarget.9313. Oncotarget. 2016. PMID: 27191650 Free PMC article. - Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor.
Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB. Bachmann PS, et al. Blood. 2005 Mar 15;105(6):2519-26. doi: 10.1182/blood-2004-05-2023. Epub 2004 Nov 30. Blood. 2005. PMID: 15572593 - Detection of chemotherapy-resistant patient-derived acute lymphoblastic leukemia clones in murine xenografts using cellular barcodes.
Jacobs S, Ausema A, Zwart E, Weersing E, de Haan G, Bystrykh LV, Belderbos ME. Jacobs S, et al. Exp Hematol. 2020 Nov;91:46-54. doi: 10.1016/j.exphem.2020.09.188. Epub 2020 Sep 15. Exp Hematol. 2020. PMID: 32946982 - Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies.
Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, Ramirez CD, Rice AM, Haber M, Norris MD, MacKenzie KL, Lock RB. Liem NL, et al. Blood. 2004 May 15;103(10):3905-14. doi: 10.1182/blood-2003-08-2911. Epub 2004 Feb 5. Blood. 2004. PMID: 14764536
Cited by
- Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia.
Cox CV, Diamanti P, Moppett JP, Blair A. Cox CV, et al. PLoS One. 2016 Oct 20;11(10):e0165210. doi: 10.1371/journal.pone.0165210. eCollection 2016. PLoS One. 2016. PMID: 27764235 Free PMC article. - Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity.
Cai S, Wang H, Bailey B, Ernstberger A, Juliar BE, Sinn AL, Chan RJ, Jones DR, Mayo LD, Baluyut AR, Goebel WS, Pollok KE. Cai S, et al. Clin Cancer Res. 2011 Apr 15;17(8):2195-206. doi: 10.1158/1078-0432.CCR-10-1959. Epub 2011 Apr 12. Clin Cancer Res. 2011. PMID: 21487065 Free PMC article. - Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?
Belmonte M, Hoofd C, Weng AP, Giambra V. Belmonte M, et al. Curr Oncol. 2016 Feb;23(1):34-41. doi: 10.3747/co.23.2806. Epub 2016 Feb 18. Curr Oncol. 2016. PMID: 26966402 Free PMC article. Review. - Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia.
Poglio S, Lewandowski D, Calvo J, Caye A, Gros A, Laharanne E, Leblanc T, Landman-Parker J, Baruchel A, Soulier J, Ballerini P, Clappier E, Pflumio F. Poglio S, et al. Oncotarget. 2016 Jul 5;7(27):41599-41611. doi: 10.18632/oncotarget.9313. Oncotarget. 2016. PMID: 27191650 Free PMC article. - T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1.
Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, Yang L, Fan X, Tang Y, Liu N, Lei X, Wu H. Zhu H, et al. Elife. 2018 Nov 9;7:e38314. doi: 10.7554/eLife.38314. Elife. 2018. PMID: 30412053 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical