HAATI survivors replace canonical telomeres with blocks of generic heterochromatin - PubMed (original) (raw)
. 2010 Sep 9;467(7312):223-7.
doi: 10.1038/nature09374.
Affiliations
- PMID: 20829796
- DOI: 10.1038/nature09374
HAATI survivors replace canonical telomeres with blocks of generic heterochromatin
Devanshi Jain et al. Nature. 2010.
Abstract
The notion that telomeres are essential for chromosome linearity stems from the existence of two chief dangers: inappropriate DNA damage response (DDR) reactions that mistake natural chromosome ends for double-strand DNA breaks (DSBs), and the progressive loss of DNA from chromosomal termini due to the end replication problem. Telomeres avert the former peril by binding sequence-specific end-protection factors that control the access of DDR activities. The latter threat is tackled by recruiting telomerase, a reverse transcriptase that uses an integral RNA subunit to template the addition of telomere repeats to chromosome ends. Here we describe an alternative mode of linear chromosome maintenance in which canonical telomeres are superseded by blocks of heterochromatin. We show that in the absence of telomerase, Schizosaccharomyces pombe cells can survive telomere sequence loss by continually amplifying and rearranging heterochromatic sequences. Because the heterochromatin assembly machinery is required for this survival mode, we have termed it 'HAATI' (heterochromatin amplification-mediated and telomerase-independent). HAATI uses the canonical end-protection protein Pot1 (ref. 4) and its interacting partner Ccq1 (ref. 5) to preserve chromosome linearity. The data suggest a model in which Ccq1 is recruited by the amplified heterochromatin and provides an anchor for Pot1, which accomplishes its end-protection function in the absence of its cognate DNA-binding sequence. HAATI resembles the chromosome end-maintenance strategy found in Drosophila melanogaster, which lacks specific telomere sequences but nonetheless assembles terminal heterochromatin structures that recruit end-protection factors. These findings reveal a previously unrecognized mode by which cancer cells might escape the requirement for telomerase activation, and offer a tool for studying genomes that sustain unusually high levels of heterochromatinization.
Similar articles
- RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes.
Begnis M, Apte MS, Masuda H, Jain D, Wheeler DL, Cooper JP. Begnis M, et al. Genes Dev. 2018 Apr 1;32(7-8):537-554. doi: 10.1101/gad.311712.118. Epub 2018 Apr 13. Genes Dev. 2018. PMID: 29654060 Free PMC article. - Roles of heterochromatin and telomere proteins in regulation of fission yeast telomere recombination and telomerase recruitment.
Khair L, Subramanian L, Moser BA, Nakamura TM. Khair L, et al. J Biol Chem. 2010 Feb 19;285(8):5327-37. doi: 10.1074/jbc.M109.078840. Epub 2009 Dec 29. J Biol Chem. 2010. PMID: 20040595 Free PMC article. - Tpz1-Ccq1 and Tpz1-Poz1 interactions within fission yeast shelterin modulate Ccq1 Thr93 phosphorylation and telomerase recruitment.
Harland JL, Chang YT, Moser BA, Nakamura TM. Harland JL, et al. PLoS Genet. 2014 Oct 16;10(10):e1004708. doi: 10.1371/journal.pgen.1004708. eCollection 2014 Oct. PLoS Genet. 2014. PMID: 25330395 Free PMC article. - Roles of Specialized Chromatin and DNA Structures at Subtelomeres in Schizosaccharomyces pombe.
Kanoh J. Kanoh J. Biomolecules. 2023 May 10;13(5):810. doi: 10.3390/biom13050810. Biomolecules. 2023. PMID: 37238680 Free PMC article. Review. - Protection and replication of telomeres in fission yeast.
Moser BA, Nakamura TM. Moser BA, et al. Biochem Cell Biol. 2009 Oct;87(5):747-58. doi: 10.1139/O09-037. Biochem Cell Biol. 2009. PMID: 19898524 Free PMC article. Review.
Cited by
- Telomere Replication: Solving Multiple End Replication Problems.
Bonnell E, Pasquier E, Wellinger RJ. Bonnell E, et al. Front Cell Dev Biol. 2021 Apr 1;9:668171. doi: 10.3389/fcell.2021.668171. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33869233 Free PMC article. Review. - Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet.
Apte MS, Cooper JP. Apte MS, et al. Crit Rev Biochem Mol Biol. 2017 Feb;52(1):57-73. doi: 10.1080/10409238.2016.1260090. Epub 2016 Nov 28. Crit Rev Biochem Mol Biol. 2017. PMID: 27892716 Free PMC article. Review. - Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe.
Allshire RC, Ekwall K. Allshire RC, et al. Cold Spring Harb Perspect Biol. 2015 Jul 1;7(7):a018770. doi: 10.1101/cshperspect.a018770. Cold Spring Harb Perspect Biol. 2015. PMID: 26134317 Free PMC article. Review. - On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution.
Garavís M, González C, Villasante A. Garavís M, et al. Genome Biol Evol. 2013;5(6):1142-50. doi: 10.1093/gbe/evt079. Genome Biol Evol. 2013. PMID: 23699225 Free PMC article. - Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms.
Rodriguez-Centeno J, Manguán-García C, Perona R, Sastre L. Rodriguez-Centeno J, et al. PLoS One. 2019 Sep 24;14(9):e0222909. doi: 10.1371/journal.pone.0222909. eCollection 2019. PLoS One. 2019. PMID: 31550289 Free PMC article.
References
- Mol Cell Biol. 1999 Dec;19(12):8083-93 - PubMed
- Methods Enzymol. 1991;194:795-823 - PubMed
- Nucleic Acids Res. 2010 Nov;38(20):6968-75 - PubMed
- Science. 2001 Apr 6;292(5514):110-3 - PubMed
- Nat Genet. 2000 Dec;26(4):447-50 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources