Role of TPPP/p25 on α-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy - PubMed (original) (raw)

Role of TPPP/p25 on α-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy

Takafumi Hasegawa et al. Neurochem Int. 2010 Dec.

Abstract

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder presenting variable combinations of parkinsonism, cerebellar ataxia, corticospinal and autonomic dysfunction. Alpha-synuclein (α-SYN)-immunopositive glial cytoplasmic inclusions (GCIs) represent the neuropathological hallmark of MSA, and tubulin polymerization promoting protein (TPPP)/p25 in oligodendroglia has been known as a potent stimulator of α-SYN aggregation. To gain insight into the molecular pathomechanisms of GCI formation and subsequent oligodendroglial degeneration, we ectopically expressed α-SYN and TPPP in HEK293T and oligodendroglial KG1C cell lines. Here we showed that TPPP specifically accelerated α-SYN oligomer formation and co-immunoprecipitation analysis revealed the specific interaction of TPPP and α-SYN. Moreover, phosphorylation of α-SYN at Ser-129 facilitated the TPPP-mediated α-SYN oligomerization. TPPP facilitated α-SYN-positive cytoplasmic perinuclear inclusions mimicking GCI in both cell lines; however, apoptotic cell death was only observed in KG1C cells. This apoptotic cell death was partly rescued by sirtuin 2 (SIRT2) inhibition. Together, our results provide further insight into the molecular pathogenesis of MSA and potential therapeutic approaches.

Copyright © 2010. Published by Elsevier Ltd.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources